Copyright | (c) 2013-2023 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Creates an Autopilot job.
Find the best-performing model after you run an Autopilot job by calling .
For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
Synopsis
- data CreateAutoMLJob = CreateAutoMLJob' {
- autoMLJobConfig :: Maybe AutoMLJobConfig
- autoMLJobObjective :: Maybe AutoMLJobObjective
- generateCandidateDefinitionsOnly :: Maybe Bool
- modelDeployConfig :: Maybe ModelDeployConfig
- problemType :: Maybe ProblemType
- tags :: Maybe [Tag]
- autoMLJobName :: Text
- inputDataConfig :: NonEmpty AutoMLChannel
- outputDataConfig :: AutoMLOutputDataConfig
- roleArn :: Text
- newCreateAutoMLJob :: Text -> NonEmpty AutoMLChannel -> AutoMLOutputDataConfig -> Text -> CreateAutoMLJob
- createAutoMLJob_autoMLJobConfig :: Lens' CreateAutoMLJob (Maybe AutoMLJobConfig)
- createAutoMLJob_autoMLJobObjective :: Lens' CreateAutoMLJob (Maybe AutoMLJobObjective)
- createAutoMLJob_generateCandidateDefinitionsOnly :: Lens' CreateAutoMLJob (Maybe Bool)
- createAutoMLJob_modelDeployConfig :: Lens' CreateAutoMLJob (Maybe ModelDeployConfig)
- createAutoMLJob_problemType :: Lens' CreateAutoMLJob (Maybe ProblemType)
- createAutoMLJob_tags :: Lens' CreateAutoMLJob (Maybe [Tag])
- createAutoMLJob_autoMLJobName :: Lens' CreateAutoMLJob Text
- createAutoMLJob_inputDataConfig :: Lens' CreateAutoMLJob (NonEmpty AutoMLChannel)
- createAutoMLJob_outputDataConfig :: Lens' CreateAutoMLJob AutoMLOutputDataConfig
- createAutoMLJob_roleArn :: Lens' CreateAutoMLJob Text
- data CreateAutoMLJobResponse = CreateAutoMLJobResponse' {
- httpStatus :: Int
- autoMLJobArn :: Text
- newCreateAutoMLJobResponse :: Int -> Text -> CreateAutoMLJobResponse
- createAutoMLJobResponse_httpStatus :: Lens' CreateAutoMLJobResponse Int
- createAutoMLJobResponse_autoMLJobArn :: Lens' CreateAutoMLJobResponse Text
Creating a Request
data CreateAutoMLJob Source #
See: newCreateAutoMLJob
smart constructor.
CreateAutoMLJob' | |
|
Instances
Create a value of CreateAutoMLJob
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:autoMLJobConfig:CreateAutoMLJob'
, createAutoMLJob_autoMLJobConfig
- A collection of settings used to configure an AutoML job.
CreateAutoMLJob
, createAutoMLJob_autoMLJobObjective
- Defines the objective metric used to measure the predictive quality of
an AutoML job. You provide an AutoMLJobObjective$MetricName and
Autopilot infers whether to minimize or maximize it.
$sel:generateCandidateDefinitionsOnly:CreateAutoMLJob'
, createAutoMLJob_generateCandidateDefinitionsOnly
- Generates possible candidates without training the models. A candidate
is a combination of data preprocessors, algorithms, and algorithm
parameter settings.
$sel:modelDeployConfig:CreateAutoMLJob'
, createAutoMLJob_modelDeployConfig
- Specifies how to generate the endpoint name for an automatic one-click
Autopilot model deployment.
CreateAutoMLJob
, createAutoMLJob_problemType
- Defines the type of supervised learning available for the candidates.
For more information, see
Amazon SageMaker Autopilot problem types and algorithm support.
CreateAutoMLJob
, createAutoMLJob_tags
- Each tag consists of a key and an optional value. Tag keys must be
unique per resource.
CreateAutoMLJob
, createAutoMLJob_autoMLJobName
- Identifies an Autopilot job. The name must be unique to your account and
is case-insensitive.
CreateAutoMLJob
, createAutoMLJob_inputDataConfig
- An array of channel objects that describes the input data and its
location. Each channel is a named input source. Similar to
InputDataConfig
supported by . Format(s) supported: CSV, Parquet. A
minimum of 500 rows is required for the training dataset. There is not a
minimum number of rows required for the validation dataset.
CreateAutoMLJob
, createAutoMLJob_outputDataConfig
- Provides information about encryption and the Amazon S3 output path
needed to store artifacts from an AutoML job. Format(s) supported: CSV.
CreateAutoMLJob
, createAutoMLJob_roleArn
- The ARN of the role that is used to access the data.
Request Lenses
createAutoMLJob_autoMLJobConfig :: Lens' CreateAutoMLJob (Maybe AutoMLJobConfig) Source #
A collection of settings used to configure an AutoML job.
createAutoMLJob_autoMLJobObjective :: Lens' CreateAutoMLJob (Maybe AutoMLJobObjective) Source #
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
createAutoMLJob_generateCandidateDefinitionsOnly :: Lens' CreateAutoMLJob (Maybe Bool) Source #
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
createAutoMLJob_modelDeployConfig :: Lens' CreateAutoMLJob (Maybe ModelDeployConfig) Source #
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
createAutoMLJob_problemType :: Lens' CreateAutoMLJob (Maybe ProblemType) Source #
Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
createAutoMLJob_tags :: Lens' CreateAutoMLJob (Maybe [Tag]) Source #
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
createAutoMLJob_autoMLJobName :: Lens' CreateAutoMLJob Text Source #
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
createAutoMLJob_inputDataConfig :: Lens' CreateAutoMLJob (NonEmpty AutoMLChannel) Source #
An array of channel objects that describes the input data and its
location. Each channel is a named input source. Similar to
InputDataConfig
supported by . Format(s) supported: CSV, Parquet. A
minimum of 500 rows is required for the training dataset. There is not a
minimum number of rows required for the validation dataset.
createAutoMLJob_outputDataConfig :: Lens' CreateAutoMLJob AutoMLOutputDataConfig Source #
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
createAutoMLJob_roleArn :: Lens' CreateAutoMLJob Text Source #
The ARN of the role that is used to access the data.
Destructuring the Response
data CreateAutoMLJobResponse Source #
See: newCreateAutoMLJobResponse
smart constructor.
CreateAutoMLJobResponse' | |
|
Instances
newCreateAutoMLJobResponse Source #
:: Int | |
-> Text | |
-> CreateAutoMLJobResponse |
Create a value of CreateAutoMLJobResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:httpStatus:CreateAutoMLJobResponse'
, createAutoMLJobResponse_httpStatus
- The response's http status code.
CreateAutoMLJobResponse
, createAutoMLJobResponse_autoMLJobArn
- The unique ARN assigned to the AutoML job when it is created.
Response Lenses
createAutoMLJobResponse_httpStatus :: Lens' CreateAutoMLJobResponse Int Source #
The response's http status code.
createAutoMLJobResponse_autoMLJobArn :: Lens' CreateAutoMLJobResponse Text Source #
The unique ARN assigned to the AutoML job when it is created.