| Copyright | (c) 2013-2023 Brendan Hay | 
|---|---|
| License | Mozilla Public License, v. 2.0. | 
| Maintainer | Brendan Hay | 
| Stability | auto-generated | 
| Portability | non-portable (GHC extensions) | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Amazonka.SageMaker.CreateTrainingJob
Description
Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.
If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.
In the request body, you provide the following:
AlgorithmSpecification- Identifies the training algorithm to use.HyperParameters- Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
InputDataConfig- Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.OutputDataConfig- Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.ResourceConfig- Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.EnableManagedSpotTraining- Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.RoleArn- The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.StoppingCondition- To help cap training costs, useMaxRuntimeInSecondsto set a time limit for training. UseMaxWaitTimeInSecondsto specify how long a managed spot training job has to complete.Environment- The environment variables to set in the Docker container.RetryStrategy- The number of times to retry the job when the job fails due to anInternalServerError.
For more information about SageMaker, see How It Works.
Synopsis
- data CreateTrainingJob = CreateTrainingJob' {
- checkpointConfig :: Maybe CheckpointConfig
 - debugHookConfig :: Maybe DebugHookConfig
 - debugRuleConfigurations :: Maybe [DebugRuleConfiguration]
 - enableInterContainerTrafficEncryption :: Maybe Bool
 - enableManagedSpotTraining :: Maybe Bool
 - enableNetworkIsolation :: Maybe Bool
 - environment :: Maybe (HashMap Text Text)
 - experimentConfig :: Maybe ExperimentConfig
 - hyperParameters :: Maybe (HashMap Text Text)
 - inputDataConfig :: Maybe (NonEmpty Channel)
 - profilerConfig :: Maybe ProfilerConfig
 - profilerRuleConfigurations :: Maybe [ProfilerRuleConfiguration]
 - retryStrategy :: Maybe RetryStrategy
 - tags :: Maybe [Tag]
 - tensorBoardOutputConfig :: Maybe TensorBoardOutputConfig
 - vpcConfig :: Maybe VpcConfig
 - trainingJobName :: Text
 - algorithmSpecification :: AlgorithmSpecification
 - roleArn :: Text
 - outputDataConfig :: OutputDataConfig
 - resourceConfig :: ResourceConfig
 - stoppingCondition :: StoppingCondition
 
 - newCreateTrainingJob :: Text -> AlgorithmSpecification -> Text -> OutputDataConfig -> ResourceConfig -> StoppingCondition -> CreateTrainingJob
 - createTrainingJob_checkpointConfig :: Lens' CreateTrainingJob (Maybe CheckpointConfig)
 - createTrainingJob_debugHookConfig :: Lens' CreateTrainingJob (Maybe DebugHookConfig)
 - createTrainingJob_debugRuleConfigurations :: Lens' CreateTrainingJob (Maybe [DebugRuleConfiguration])
 - createTrainingJob_enableInterContainerTrafficEncryption :: Lens' CreateTrainingJob (Maybe Bool)
 - createTrainingJob_enableManagedSpotTraining :: Lens' CreateTrainingJob (Maybe Bool)
 - createTrainingJob_enableNetworkIsolation :: Lens' CreateTrainingJob (Maybe Bool)
 - createTrainingJob_environment :: Lens' CreateTrainingJob (Maybe (HashMap Text Text))
 - createTrainingJob_experimentConfig :: Lens' CreateTrainingJob (Maybe ExperimentConfig)
 - createTrainingJob_hyperParameters :: Lens' CreateTrainingJob (Maybe (HashMap Text Text))
 - createTrainingJob_inputDataConfig :: Lens' CreateTrainingJob (Maybe (NonEmpty Channel))
 - createTrainingJob_profilerConfig :: Lens' CreateTrainingJob (Maybe ProfilerConfig)
 - createTrainingJob_profilerRuleConfigurations :: Lens' CreateTrainingJob (Maybe [ProfilerRuleConfiguration])
 - createTrainingJob_retryStrategy :: Lens' CreateTrainingJob (Maybe RetryStrategy)
 - createTrainingJob_tags :: Lens' CreateTrainingJob (Maybe [Tag])
 - createTrainingJob_tensorBoardOutputConfig :: Lens' CreateTrainingJob (Maybe TensorBoardOutputConfig)
 - createTrainingJob_vpcConfig :: Lens' CreateTrainingJob (Maybe VpcConfig)
 - createTrainingJob_trainingJobName :: Lens' CreateTrainingJob Text
 - createTrainingJob_algorithmSpecification :: Lens' CreateTrainingJob AlgorithmSpecification
 - createTrainingJob_roleArn :: Lens' CreateTrainingJob Text
 - createTrainingJob_outputDataConfig :: Lens' CreateTrainingJob OutputDataConfig
 - createTrainingJob_resourceConfig :: Lens' CreateTrainingJob ResourceConfig
 - createTrainingJob_stoppingCondition :: Lens' CreateTrainingJob StoppingCondition
 - data CreateTrainingJobResponse = CreateTrainingJobResponse' {
- httpStatus :: Int
 - trainingJobArn :: Text
 
 - newCreateTrainingJobResponse :: Int -> Text -> CreateTrainingJobResponse
 - createTrainingJobResponse_httpStatus :: Lens' CreateTrainingJobResponse Int
 - createTrainingJobResponse_trainingJobArn :: Lens' CreateTrainingJobResponse Text
 
Creating a Request
data CreateTrainingJob Source #
See: newCreateTrainingJob smart constructor.
Constructors
| CreateTrainingJob' | |
Fields 
  | |
Instances
Arguments
| :: Text | |
| -> AlgorithmSpecification | |
| -> Text | |
| -> OutputDataConfig | |
| -> ResourceConfig | |
| -> StoppingCondition | |
| -> CreateTrainingJob | 
Create a value of CreateTrainingJob with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
CreateTrainingJob, createTrainingJob_checkpointConfig - Contains information about the output location for managed spot training
 checkpoint data.
CreateTrainingJob, createTrainingJob_debugHookConfig - Undocumented member.
CreateTrainingJob, createTrainingJob_debugRuleConfigurations - Configuration information for Amazon SageMaker Debugger rules for
 debugging output tensors.
CreateTrainingJob, createTrainingJob_enableInterContainerTrafficEncryption - To encrypt all communications between ML compute instances in
 distributed training, choose True. Encryption provides greater
 security for distributed training, but training might take longer. How
 long it takes depends on the amount of communication between compute
 instances, especially if you use a deep learning algorithm in
 distributed training. For more information, see
 Protect Communications Between ML Compute Instances in a Distributed Training Job.
CreateTrainingJob, createTrainingJob_enableManagedSpotTraining - To train models using managed spot training, choose True. Managed spot
 training provides a fully managed and scalable infrastructure for
 training machine learning models. this option is useful when training
 jobs can be interrupted and when there is flexibility when the training
 job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
CreateTrainingJob, createTrainingJob_enableNetworkIsolation - Isolates the training container. No inbound or outbound network calls
 can be made, except for calls between peers within a training cluster
 for distributed training. If you enable network isolation for training
 jobs that are configured to use a VPC, SageMaker downloads and uploads
 customer data and model artifacts through the specified VPC, but the
 training container does not have network access.
CreateTrainingJob, createTrainingJob_environment - The environment variables to set in the Docker container.
CreateTrainingJob, createTrainingJob_experimentConfig - Undocumented member.
CreateTrainingJob, createTrainingJob_hyperParameters - Algorithm-specific parameters that influence the quality of the model.
 You set hyperparameters before you start the learning process. For a
 list of hyperparameters for each training algorithm provided by
 SageMaker, see
 Algorithms.
You can specify a maximum of 100 hyperparameters. Each hyperparameter is
 a key-value pair. Each key and value is limited to 256 characters, as
 specified by the Length Constraint.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
CreateTrainingJob, createTrainingJob_inputDataConfig - An array of Channel objects. Each channel is a named input source.
 InputDataConfig describes the input data and its location.
Algorithms can accept input data from one or more channels. For example,
 an algorithm might have two channels of input data, training_data and
 validation_data. The configuration for each channel provides the S3,
 EFS, or FSx location where the input data is stored. It also provides
 information about the stored data: the MIME type, compression method,
 and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
$sel:profilerConfig:CreateTrainingJob', createTrainingJob_profilerConfig - Undocumented member.
$sel:profilerRuleConfigurations:CreateTrainingJob', createTrainingJob_profilerRuleConfigurations - Configuration information for Amazon SageMaker Debugger rules for
 profiling system and framework metrics.
CreateTrainingJob, createTrainingJob_retryStrategy - The number of times to retry the job when the job fails due to an
 InternalServerError.
CreateTrainingJob, createTrainingJob_tags - An array of key-value pairs. You can use tags to categorize your Amazon
 Web Services resources in different ways, for example, by purpose,
 owner, or environment. For more information, see
 Tagging Amazon Web Services Resources.
CreateTrainingJob, createTrainingJob_tensorBoardOutputConfig - Undocumented member.
CreateTrainingJob, createTrainingJob_vpcConfig - A VpcConfig object that specifies the VPC that you want your training
 job to connect to. Control access to and from your training container by
 configuring the VPC. For more information, see
 Protect Training Jobs by Using an Amazon Virtual Private Cloud.
CreateTrainingJob, createTrainingJob_trainingJobName - The name of the training job. The name must be unique within an Amazon
 Web Services Region in an Amazon Web Services account.
CreateTrainingJob, createTrainingJob_algorithmSpecification - The registry path of the Docker image that contains the training
 algorithm and algorithm-specific metadata, including the input mode. For
 more information about algorithms provided by SageMaker, see
 Algorithms.
 For information about providing your own algorithms, see
 Using Your Own Algorithms with Amazon SageMaker.
CreateTrainingJob, createTrainingJob_roleArn - The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume
 to perform tasks on your behalf.
During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.
To be able to pass this role to SageMaker, the caller of this API must
 have the iam:PassRole permission.
CreateTrainingJob, createTrainingJob_outputDataConfig - Specifies the path to the S3 location where you want to store model
 artifacts. SageMaker creates subfolders for the artifacts.
CreateTrainingJob, createTrainingJob_resourceConfig - The resources, including the ML compute instances and ML storage
 volumes, to use for model training.
ML storage volumes store model artifacts and incremental states.
 Training algorithms might also use ML storage volumes for scratch space.
 If you want SageMaker to use the ML storage volume to store the training
 data, choose File as the TrainingInputMode in the algorithm
 specification. For distributed training algorithms, specify an instance
 count greater than 1.
CreateTrainingJob, createTrainingJob_stoppingCondition - Specifies a limit to how long a model training job can run. It also
 specifies how long a managed Spot training job has to complete. When the
 job reaches the time limit, SageMaker ends the training job. Use this
 API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
 delays job termination for 120 seconds. Algorithms can use this
 120-second window to save the model artifacts, so the results of
 training are not lost.
Request Lenses
createTrainingJob_checkpointConfig :: Lens' CreateTrainingJob (Maybe CheckpointConfig) Source #
Contains information about the output location for managed spot training checkpoint data.
createTrainingJob_debugHookConfig :: Lens' CreateTrainingJob (Maybe DebugHookConfig) Source #
Undocumented member.
createTrainingJob_debugRuleConfigurations :: Lens' CreateTrainingJob (Maybe [DebugRuleConfiguration]) Source #
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
createTrainingJob_enableInterContainerTrafficEncryption :: Lens' CreateTrainingJob (Maybe Bool) Source #
To encrypt all communications between ML compute instances in
 distributed training, choose True. Encryption provides greater
 security for distributed training, but training might take longer. How
 long it takes depends on the amount of communication between compute
 instances, especially if you use a deep learning algorithm in
 distributed training. For more information, see
 Protect Communications Between ML Compute Instances in a Distributed Training Job.
createTrainingJob_enableManagedSpotTraining :: Lens' CreateTrainingJob (Maybe Bool) Source #
To train models using managed spot training, choose True. Managed spot
 training provides a fully managed and scalable infrastructure for
 training machine learning models. this option is useful when training
 jobs can be interrupted and when there is flexibility when the training
 job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
createTrainingJob_enableNetworkIsolation :: Lens' CreateTrainingJob (Maybe Bool) Source #
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
createTrainingJob_environment :: Lens' CreateTrainingJob (Maybe (HashMap Text Text)) Source #
The environment variables to set in the Docker container.
createTrainingJob_experimentConfig :: Lens' CreateTrainingJob (Maybe ExperimentConfig) Source #
Undocumented member.
createTrainingJob_hyperParameters :: Lens' CreateTrainingJob (Maybe (HashMap Text Text)) Source #
Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.
You can specify a maximum of 100 hyperparameters. Each hyperparameter is
 a key-value pair. Each key and value is limited to 256 characters, as
 specified by the Length Constraint.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
createTrainingJob_inputDataConfig :: Lens' CreateTrainingJob (Maybe (NonEmpty Channel)) Source #
An array of Channel objects. Each channel is a named input source.
 InputDataConfig describes the input data and its location.
Algorithms can accept input data from one or more channels. For example,
 an algorithm might have two channels of input data, training_data and
 validation_data. The configuration for each channel provides the S3,
 EFS, or FSx location where the input data is stored. It also provides
 information about the stored data: the MIME type, compression method,
 and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
createTrainingJob_profilerConfig :: Lens' CreateTrainingJob (Maybe ProfilerConfig) Source #
Undocumented member.
createTrainingJob_profilerRuleConfigurations :: Lens' CreateTrainingJob (Maybe [ProfilerRuleConfiguration]) Source #
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
createTrainingJob_retryStrategy :: Lens' CreateTrainingJob (Maybe RetryStrategy) Source #
The number of times to retry the job when the job fails due to an
 InternalServerError.
createTrainingJob_tags :: Lens' CreateTrainingJob (Maybe [Tag]) Source #
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
createTrainingJob_tensorBoardOutputConfig :: Lens' CreateTrainingJob (Maybe TensorBoardOutputConfig) Source #
Undocumented member.
createTrainingJob_vpcConfig :: Lens' CreateTrainingJob (Maybe VpcConfig) Source #
A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
createTrainingJob_trainingJobName :: Lens' CreateTrainingJob Text Source #
The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
createTrainingJob_algorithmSpecification :: Lens' CreateTrainingJob AlgorithmSpecification Source #
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
createTrainingJob_roleArn :: Lens' CreateTrainingJob Text Source #
The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.
During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.
To be able to pass this role to SageMaker, the caller of this API must
 have the iam:PassRole permission.
createTrainingJob_outputDataConfig :: Lens' CreateTrainingJob OutputDataConfig Source #
Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
createTrainingJob_resourceConfig :: Lens' CreateTrainingJob ResourceConfig Source #
The resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states.
 Training algorithms might also use ML storage volumes for scratch space.
 If you want SageMaker to use the ML storage volume to store the training
 data, choose File as the TrainingInputMode in the algorithm
 specification. For distributed training algorithms, specify an instance
 count greater than 1.
createTrainingJob_stoppingCondition :: Lens' CreateTrainingJob StoppingCondition Source #
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
 delays job termination for 120 seconds. Algorithms can use this
 120-second window to save the model artifacts, so the results of
 training are not lost.
Destructuring the Response
data CreateTrainingJobResponse Source #
See: newCreateTrainingJobResponse smart constructor.
Constructors
| CreateTrainingJobResponse' | |
Fields 
  | |
Instances
newCreateTrainingJobResponse Source #
Arguments
| :: Int | |
| -> Text | |
| -> CreateTrainingJobResponse | 
Create a value of CreateTrainingJobResponse with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:httpStatus:CreateTrainingJobResponse', createTrainingJobResponse_httpStatus - The response's http status code.
CreateTrainingJobResponse, createTrainingJobResponse_trainingJobArn - The Amazon Resource Name (ARN) of the training job.
Response Lenses
createTrainingJobResponse_httpStatus :: Lens' CreateTrainingJobResponse Int Source #
The response's http status code.
createTrainingJobResponse_trainingJobArn :: Lens' CreateTrainingJobResponse Text Source #
The Amazon Resource Name (ARN) of the training job.