| Copyright | (c) 2013-2023 Brendan Hay | 
|---|---|
| License | Mozilla Public License, v. 2.0. | 
| Maintainer | Brendan Hay | 
| Stability | auto-generated | 
| Portability | non-portable (GHC extensions) | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Amazonka.SageMaker.Types.HyperParameterTuningResourceConfig
Description
Synopsis
- data HyperParameterTuningResourceConfig = HyperParameterTuningResourceConfig' {}
 - newHyperParameterTuningResourceConfig :: HyperParameterTuningResourceConfig
 - hyperParameterTuningResourceConfig_allocationStrategy :: Lens' HyperParameterTuningResourceConfig (Maybe HyperParameterTuningAllocationStrategy)
 - hyperParameterTuningResourceConfig_instanceConfigs :: Lens' HyperParameterTuningResourceConfig (Maybe (NonEmpty HyperParameterTuningInstanceConfig))
 - hyperParameterTuningResourceConfig_instanceCount :: Lens' HyperParameterTuningResourceConfig (Maybe Natural)
 - hyperParameterTuningResourceConfig_instanceType :: Lens' HyperParameterTuningResourceConfig (Maybe TrainingInstanceType)
 - hyperParameterTuningResourceConfig_volumeKmsKeyId :: Lens' HyperParameterTuningResourceConfig (Maybe Text)
 - hyperParameterTuningResourceConfig_volumeSizeInGB :: Lens' HyperParameterTuningResourceConfig (Maybe Natural)
 
Documentation
data HyperParameterTuningResourceConfig Source #
The configuration of resources, including compute instances and storage
 volumes for use in training jobs launched by hyperparameter tuning jobs.
 HyperParameterTuningResourceConfig is similar to ResourceConfig, but
 has the additional InstanceConfigs and AllocationStrategy fields to
 allow for flexible instance management. Specify one or more instance
 types, count, and the allocation strategy for instance selection.
HyperParameterTuningResourceConfig supports the capabilities of
 ResourceConfig with the exception of KeepAlivePeriodInSeconds.
 Hyperparameter tuning jobs use warm pools by default, which reuse
 clusters between training jobs.
See: newHyperParameterTuningResourceConfig smart constructor.
Constructors
| HyperParameterTuningResourceConfig' | |
Fields 
  | |
Instances
newHyperParameterTuningResourceConfig :: HyperParameterTuningResourceConfig Source #
Create a value of HyperParameterTuningResourceConfig with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:allocationStrategy:HyperParameterTuningResourceConfig', hyperParameterTuningResourceConfig_allocationStrategy - The strategy that determines the order of preference for resources
 specified in InstanceConfigs used in hyperparameter optimization.
$sel:instanceConfigs:HyperParameterTuningResourceConfig', hyperParameterTuningResourceConfig_instanceConfigs - A list containing the configuration(s) for one or more resources for
 processing hyperparameter jobs. These resources include compute
 instances and storage volumes to use in model training jobs launched by
 hyperparameter tuning jobs. The AllocationStrategy controls the order
 in which multiple configurations provided in InstanceConfigs are used.
If you only want to use a single instance configuration inside the
 HyperParameterTuningResourceConfig API, do not provide a value for
 InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and
 InstanceCount. If you use InstanceConfigs, do not provide values for
 InstanceType, VolumeSizeInGB or InstanceCount.
HyperParameterTuningResourceConfig, hyperParameterTuningResourceConfig_instanceCount - The number of compute instances of type InstanceType to use. For
 distributed training,
 select a value greater than 1.
HyperParameterTuningResourceConfig, hyperParameterTuningResourceConfig_instanceType - The instance type used to run hyperparameter optimization tuning jobs.
 See
 descriptions of instance types
 for more information.
$sel:volumeKmsKeyId:HyperParameterTuningResourceConfig', hyperParameterTuningResourceConfig_volumeKmsKeyId - A key used by Amazon Web Services Key Management Service to encrypt data
 on the storage volume attached to the compute instances used to run the
 training job. You can use either of the following formats to specify a
 key.
KMS Key ID:
"1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key:
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
Some instances use local storage, which use a
 hardware module to encrypt
 storage volumes. If you choose one of these instance types, you cannot
 request a VolumeKmsKeyId. For a list of instance types that use local
 storage, see
 instance store volumes.
 For more information about Amazon Web Services Key Management Service,
 see
 KMS encryption
 for more information.
HyperParameterTuningResourceConfig, hyperParameterTuningResourceConfig_volumeSizeInGB - The volume size in GB for the storage volume to be used in processing
 hyperparameter optimization jobs (optional). These volumes store model
 artifacts, incremental states and optionally, scratch space for training
 algorithms. Do not provide a value for this parameter if a value for
 InstanceConfigs is also specified.
Some instance types have a fixed total local storage size. If you select
 one of these instances for training, VolumeSizeInGB cannot be greater
 than this total size. For a list of instance types with local instance
 storage and their sizes, see
 instance store volumes.
SageMaker supports only the General Purpose SSD (gp2) storage volume type.
hyperParameterTuningResourceConfig_allocationStrategy :: Lens' HyperParameterTuningResourceConfig (Maybe HyperParameterTuningAllocationStrategy) Source #
The strategy that determines the order of preference for resources
 specified in InstanceConfigs used in hyperparameter optimization.
hyperParameterTuningResourceConfig_instanceConfigs :: Lens' HyperParameterTuningResourceConfig (Maybe (NonEmpty HyperParameterTuningInstanceConfig)) Source #
A list containing the configuration(s) for one or more resources for
 processing hyperparameter jobs. These resources include compute
 instances and storage volumes to use in model training jobs launched by
 hyperparameter tuning jobs. The AllocationStrategy controls the order
 in which multiple configurations provided in InstanceConfigs are used.
If you only want to use a single instance configuration inside the
 HyperParameterTuningResourceConfig API, do not provide a value for
 InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and
 InstanceCount. If you use InstanceConfigs, do not provide values for
 InstanceType, VolumeSizeInGB or InstanceCount.
hyperParameterTuningResourceConfig_instanceCount :: Lens' HyperParameterTuningResourceConfig (Maybe Natural) Source #
The number of compute instances of type InstanceType to use. For
 distributed training,
 select a value greater than 1.
hyperParameterTuningResourceConfig_instanceType :: Lens' HyperParameterTuningResourceConfig (Maybe TrainingInstanceType) Source #
The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.
hyperParameterTuningResourceConfig_volumeKmsKeyId :: Lens' HyperParameterTuningResourceConfig (Maybe Text) Source #
A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.
KMS Key ID:
"1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key:
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
Some instances use local storage, which use a
 hardware module to encrypt
 storage volumes. If you choose one of these instance types, you cannot
 request a VolumeKmsKeyId. For a list of instance types that use local
 storage, see
 instance store volumes.
 For more information about Amazon Web Services Key Management Service,
 see
 KMS encryption
 for more information.
hyperParameterTuningResourceConfig_volumeSizeInGB :: Lens' HyperParameterTuningResourceConfig (Maybe Natural) Source #
The volume size in GB for the storage volume to be used in processing
 hyperparameter optimization jobs (optional). These volumes store model
 artifacts, incremental states and optionally, scratch space for training
 algorithms. Do not provide a value for this parameter if a value for
 InstanceConfigs is also specified.
Some instance types have a fixed total local storage size. If you select
 one of these instances for training, VolumeSizeInGB cannot be greater
 than this total size. For a list of instance types with local instance
 storage and their sizes, see
 instance store volumes.
SageMaker supports only the General Purpose SSD (gp2) storage volume type.