| Copyright | (c) 2013-2023 Brendan Hay | 
|---|---|
| License | Mozilla Public License, v. 2.0. | 
| Maintainer | Brendan Hay | 
| Stability | auto-generated | 
| Portability | non-portable (GHC extensions) | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Amazonka.SageMaker.Types.RecommendationJobContainerConfig
Description
Synopsis
- data RecommendationJobContainerConfig = RecommendationJobContainerConfig' {}
 - newRecommendationJobContainerConfig :: RecommendationJobContainerConfig
 - recommendationJobContainerConfig_domain :: Lens' RecommendationJobContainerConfig (Maybe Text)
 - recommendationJobContainerConfig_framework :: Lens' RecommendationJobContainerConfig (Maybe Text)
 - recommendationJobContainerConfig_frameworkVersion :: Lens' RecommendationJobContainerConfig (Maybe Text)
 - recommendationJobContainerConfig_nearestModelName :: Lens' RecommendationJobContainerConfig (Maybe Text)
 - recommendationJobContainerConfig_payloadConfig :: Lens' RecommendationJobContainerConfig (Maybe RecommendationJobPayloadConfig)
 - recommendationJobContainerConfig_supportedInstanceTypes :: Lens' RecommendationJobContainerConfig (Maybe [Text])
 - recommendationJobContainerConfig_task :: Lens' RecommendationJobContainerConfig (Maybe Text)
 
Documentation
data RecommendationJobContainerConfig Source #
Specifies mandatory fields for running an Inference Recommender job
 directly in the
 CreateInferenceRecommendationsJob
 API. The fields specified in ContainerConfig override the
 corresponding fields in the model package. Use ContainerConfig if you
 want to specify these fields for the recommendation job but don't want
 to edit them in your model package.
See: newRecommendationJobContainerConfig smart constructor.
Constructors
| RecommendationJobContainerConfig' | |
Fields 
  | |
Instances
newRecommendationJobContainerConfig :: RecommendationJobContainerConfig Source #
Create a value of RecommendationJobContainerConfig with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:domain:RecommendationJobContainerConfig', recommendationJobContainerConfig_domain - The machine learning domain of the model and its components.
Valid Values:
 COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
$sel:framework:RecommendationJobContainerConfig', recommendationJobContainerConfig_framework - The machine learning framework of the container image.
Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
$sel:frameworkVersion:RecommendationJobContainerConfig', recommendationJobContainerConfig_frameworkVersion - The framework version of the container image.
$sel:nearestModelName:RecommendationJobContainerConfig', recommendationJobContainerConfig_nearestModelName - The name of a pre-trained machine learning model benchmarked by Amazon
 SageMaker Inference Recommender that matches your model.
Valid Values:
 efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
$sel:payloadConfig:RecommendationJobContainerConfig', recommendationJobContainerConfig_payloadConfig - Specifies the SamplePayloadUrl and all other sample payload-related
 fields.
$sel:supportedInstanceTypes:RecommendationJobContainerConfig', recommendationJobContainerConfig_supportedInstanceTypes - A list of the instance types that are used to generate inferences in
 real-time.
$sel:task:RecommendationJobContainerConfig', recommendationJobContainerConfig_task - The machine learning task that the model accomplishes.
Valid Values:
 IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
recommendationJobContainerConfig_domain :: Lens' RecommendationJobContainerConfig (Maybe Text) Source #
The machine learning domain of the model and its components.
Valid Values:
 COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
recommendationJobContainerConfig_framework :: Lens' RecommendationJobContainerConfig (Maybe Text) Source #
The machine learning framework of the container image.
Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
recommendationJobContainerConfig_frameworkVersion :: Lens' RecommendationJobContainerConfig (Maybe Text) Source #
The framework version of the container image.
recommendationJobContainerConfig_nearestModelName :: Lens' RecommendationJobContainerConfig (Maybe Text) Source #
The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
Valid Values:
 efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
recommendationJobContainerConfig_payloadConfig :: Lens' RecommendationJobContainerConfig (Maybe RecommendationJobPayloadConfig) Source #
Specifies the SamplePayloadUrl and all other sample payload-related
 fields.
recommendationJobContainerConfig_supportedInstanceTypes :: Lens' RecommendationJobContainerConfig (Maybe [Text]) Source #
A list of the instance types that are used to generate inferences in real-time.
recommendationJobContainerConfig_task :: Lens' RecommendationJobContainerConfig (Maybe Text) Source #
The machine learning task that the model accomplishes.
Valid Values:
 IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER