| Copyright | (c) 2013-2023 Brendan Hay | 
|---|---|
| License | Mozilla Public License, v. 2.0. | 
| Maintainer | Brendan Hay | 
| Stability | auto-generated | 
| Portability | non-portable (GHC extensions) | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Amazonka.SageMaker.Types.TrainingJobDefinition
Description
Synopsis
- data TrainingJobDefinition = TrainingJobDefinition' {}
 - newTrainingJobDefinition :: TrainingInputMode -> NonEmpty Channel -> OutputDataConfig -> ResourceConfig -> StoppingCondition -> TrainingJobDefinition
 - trainingJobDefinition_hyperParameters :: Lens' TrainingJobDefinition (Maybe (HashMap Text Text))
 - trainingJobDefinition_trainingInputMode :: Lens' TrainingJobDefinition TrainingInputMode
 - trainingJobDefinition_inputDataConfig :: Lens' TrainingJobDefinition (NonEmpty Channel)
 - trainingJobDefinition_outputDataConfig :: Lens' TrainingJobDefinition OutputDataConfig
 - trainingJobDefinition_resourceConfig :: Lens' TrainingJobDefinition ResourceConfig
 - trainingJobDefinition_stoppingCondition :: Lens' TrainingJobDefinition StoppingCondition
 
Documentation
data TrainingJobDefinition Source #
Defines the input needed to run a training job using the algorithm.
See: newTrainingJobDefinition smart constructor.
Constructors
| TrainingJobDefinition' | |
Fields 
  | |
Instances
newTrainingJobDefinition Source #
Arguments
| :: TrainingInputMode | |
| -> NonEmpty Channel | |
| -> OutputDataConfig | |
| -> ResourceConfig | |
| -> StoppingCondition | |
| -> TrainingJobDefinition | 
Create a value of TrainingJobDefinition with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:hyperParameters:TrainingJobDefinition', trainingJobDefinition_hyperParameters - The hyperparameters used for the training job.
$sel:trainingInputMode:TrainingJobDefinition', trainingJobDefinition_trainingInputMode - Undocumented member.
$sel:inputDataConfig:TrainingJobDefinition', trainingJobDefinition_inputDataConfig - An array of Channel objects, each of which specifies an input source.
$sel:outputDataConfig:TrainingJobDefinition', trainingJobDefinition_outputDataConfig - the path to the S3 bucket where you want to store model artifacts.
 SageMaker creates subfolders for the artifacts.
$sel:resourceConfig:TrainingJobDefinition', trainingJobDefinition_resourceConfig - The resources, including the ML compute instances and ML storage
 volumes, to use for model training.
$sel:stoppingCondition:TrainingJobDefinition', trainingJobDefinition_stoppingCondition - Specifies a limit to how long a model training job can run. It also
 specifies how long a managed Spot training job has to complete. When the
 job reaches the time limit, SageMaker ends the training job. Use this
 API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
trainingJobDefinition_hyperParameters :: Lens' TrainingJobDefinition (Maybe (HashMap Text Text)) Source #
The hyperparameters used for the training job.
trainingJobDefinition_trainingInputMode :: Lens' TrainingJobDefinition TrainingInputMode Source #
Undocumented member.
trainingJobDefinition_inputDataConfig :: Lens' TrainingJobDefinition (NonEmpty Channel) Source #
An array of Channel objects, each of which specifies an input source.
trainingJobDefinition_outputDataConfig :: Lens' TrainingJobDefinition OutputDataConfig Source #
the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
trainingJobDefinition_resourceConfig :: Lens' TrainingJobDefinition ResourceConfig Source #
The resources, including the ML compute instances and ML storage volumes, to use for model training.
trainingJobDefinition_stoppingCondition :: Lens' TrainingJobDefinition StoppingCondition Source #
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.