antelude-0.1.0: Yet another alternative Prelude for Haskell.
Maintainerdneavesdev@pm.me
Safe HaskellSafe
LanguageGHC2021

Antelude.List.NonEmpty

Description

 
Synopsis

Rexports

data NonEmpty a #

Non-empty (and non-strict) list type.

Since: base-4.9.0.0

Constructors

a :| [a] infixr 5 

Instances

Instances details
Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Applicative NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

Semigroup (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

IsList (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.IsList

Associated Types

type Item (NonEmpty a) #

Methods

fromList :: [Item (NonEmpty a)] -> NonEmpty a #

fromListN :: Int -> [Item (NonEmpty a)] -> NonEmpty a #

toList :: NonEmpty a -> [Item (NonEmpty a)] #

Read a => Read (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Read

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Eq a => Eq (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Ord a => Ord (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

compare :: NonEmpty a -> NonEmpty a -> Ordering #

(<) :: NonEmpty a -> NonEmpty a -> Bool #

(<=) :: NonEmpty a -> NonEmpty a -> Bool #

(>) :: NonEmpty a -> NonEmpty a -> Bool #

(>=) :: NonEmpty a -> NonEmpty a -> Bool #

max :: NonEmpty a -> NonEmpty a -> NonEmpty a #

min :: NonEmpty a -> NonEmpty a -> NonEmpty a #

type Item (NonEmpty a) 
Instance details

Defined in GHC.IsList

type Item (NonEmpty a) = a

zipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

The zipWith function generalizes zip. Rather than tupling the elements, the elements are combined using the function passed as the first argument.

sortBy :: (a -> a -> Ordering) -> NonEmpty a -> NonEmpty a #

sortBy for NonEmpty, behaves the same as sortBy

length :: NonEmpty a -> Int #

Number of elements in NonEmpty list.

head :: NonEmpty a -> a #

Extract the first element of the stream.

group :: (Foldable f, Eq a) => f a -> [NonEmpty a] #

The group function takes a stream and returns a list of streams such that flattening the resulting list is equal to the argument. Moreover, each stream in the resulting list contains only equal elements. For example, in list notation:

'group' $ 'cycle' "Mississippi"
  = "M" : "i" : "ss" : "i" : "ss" : "i" : "pp" : "i" : "M" : "i" : ...

groupBy :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a] #

groupBy operates like group, but uses the provided equality predicate instead of ==.

filter :: (a -> Bool) -> NonEmpty a -> [a] #

filter p xs removes any elements from xs that do not satisfy p.

unfoldr :: (a -> (b, Maybe a)) -> a -> NonEmpty b #

The unfoldr function is analogous to Data.List's unfoldr operation.

transpose :: NonEmpty (NonEmpty a) -> NonEmpty (NonEmpty a) #

transpose for NonEmpty, behaves the same as transpose The rows/columns need not be the same length, in which case > transpose . transpose /= id

cycle :: NonEmpty a -> NonEmpty a #

cycle xs returns the infinite repetition of xs:

cycle (1 :| [2,3]) = 1 :| [2,3,1,2,3,...]

zip :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b) #

The zip function takes two streams and returns a stream of corresponding pairs.

map :: (a -> b) -> NonEmpty a -> NonEmpty b #

Map a function over a NonEmpty stream.

toList :: NonEmpty a -> [a] #

Convert a stream to a normal list efficiently.

uncons :: NonEmpty a -> (a, Maybe (NonEmpty a)) #

uncons produces the first element of the stream, and a stream of the remaining elements, if any.

tail :: NonEmpty a -> [a] #

Extract the possibly-empty tail of the stream.

last :: NonEmpty a -> a #

Extract the last element of the stream.

init :: NonEmpty a -> [a] #

Extract everything except the last element of the stream.

scanl :: Foldable f => (b -> a -> b) -> b -> f a -> NonEmpty b #

scanl is similar to foldl, but returns a stream of successive reduced values from the left:

scanl f z [x1, x2, ...] == z :| [z `f` x1, (z `f` x1) `f` x2, ...]

Note that

last (scanl f z xs) == foldl f z xs.

scanl1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a #

scanl1 is a variant of scanl that has no starting value argument:

scanl1 f [x1, x2, ...] == x1 :| [x1 `f` x2, x1 `f` (x2 `f` x3), ...]

scanr :: Foldable f => (a -> b -> b) -> b -> f a -> NonEmpty b #

scanr is the right-to-left dual of scanl. Note that

head (scanr f z xs) == foldr f z xs.

scanr1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a #

scanr1 is a variant of scanr that has no starting value argument.

iterate :: (a -> a) -> a -> NonEmpty a #

iterate f x produces the infinite sequence of repeated applications of f to x.

iterate f x = x :| [f x, f (f x), ..]

repeat :: a -> NonEmpty a #

repeat x returns a constant stream, where all elements are equal to x.

takeWhile :: (a -> Bool) -> NonEmpty a -> [a] #

takeWhile p xs returns the longest prefix of the stream xs for which the predicate p holds.

dropWhile :: (a -> Bool) -> NonEmpty a -> [a] #

dropWhile p xs returns the suffix remaining after takeWhile p xs.

take :: Int -> NonEmpty a -> [a] #

take n xs returns the first n elements of xs.

drop :: Int -> NonEmpty a -> [a] #

drop n xs drops the first n elements off the front of the sequence xs.

splitAt :: Int -> NonEmpty a -> ([a], [a]) #

splitAt n xs returns a pair consisting of the prefix of xs of length n and the remaining stream immediately following this prefix.

'splitAt' n xs == ('take' n xs, 'drop' n xs)
xs == ys ++ zs where (ys, zs) = 'splitAt' n xs

span :: (a -> Bool) -> NonEmpty a -> ([a], [a]) #

span p xs returns the longest prefix of xs that satisfies p, together with the remainder of the stream.

'span' p xs == ('takeWhile' p xs, 'dropWhile' p xs)
xs == ys ++ zs where (ys, zs) = 'span' p xs

break :: (a -> Bool) -> NonEmpty a -> ([a], [a]) #

The break p function is equivalent to span (not . p).

reverse :: NonEmpty a -> NonEmpty a #

reverse a finite NonEmpty stream.

(!!) :: HasCallStack => NonEmpty a -> Int -> a infixl 9 #

xs !! n returns the element of the stream xs at index n. Note that the head of the stream has index 0.

Beware: a negative or out-of-bounds index will cause an error.

unzip :: Functor f => f (a, b) -> (f a, f b) #

The unzip function is the inverse of the zip function.

xor :: NonEmpty Bool -> Bool #

Compute n-ary logic exclusive OR operation on NonEmpty list.

isPrefixOf :: Eq a => [a] -> NonEmpty a -> Bool #

The isPrefixOf function returns True if the first argument is a prefix of the second.

nub :: Eq a => NonEmpty a -> NonEmpty a #

The nub function removes duplicate elements from a list. In particular, it keeps only the first occurrence of each element. (The name nub means 'essence'.) It is a special case of nubBy, which allows the programmer to supply their own inequality test.

nubBy :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty a #

The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

intersperse :: a -> NonEmpty a -> NonEmpty a #

'intersperse x xs' alternates elements of the list with copies of x.

intersperse 0 (1 :| [2,3]) == 1 :| [0,2,0,3]

partition :: (a -> Bool) -> NonEmpty a -> ([a], [a]) #

The partition function takes a predicate p and a stream xs, and returns a pair of lists. The first list corresponds to the elements of xs for which p holds; the second corresponds to the elements of xs for which p does not hold.

'partition' p xs = ('filter' p xs, 'filter' (not . p) xs)

insert :: (Foldable f, Ord a) => a -> f a -> NonEmpty a #

insert x xs inserts x into the last position in xs where it is still less than or equal to the next element. In particular, if the list is sorted beforehand, the result will also be sorted.

inits :: Foldable f => f a -> NonEmpty [a] #

The inits function takes a stream xs and returns all the finite prefixes of xs, starting with the shortest. The result is NonEmpty because the result always contains the empty list as the first element.

inits [1,2,3] == [] :| [[1], [1,2], [1,2,3]]
inits [1] == [] :| [[1]]
inits [] == [] :| []

tails :: Foldable f => f a -> NonEmpty [a] #

The tails function takes a stream xs and returns all the suffixes of xs, starting with the longest. The result is NonEmpty because the result always contains the empty list as the last element.

tails [1,2,3] == [1,2,3] :| [[2,3], [3], []]
tails [1] == [1] :| [[]]
tails [] == [] :| []

sort :: Ord a => NonEmpty a -> NonEmpty a #

Sort a stream.

singleton :: a -> NonEmpty a #

Construct a NonEmpty list from a single element.

Since: base-4.15

unfold :: (a -> (b, Maybe a)) -> a -> NonEmpty b #

unfold produces a new stream by repeatedly applying the unfolding function to the seed value to produce an element of type b and a new seed value. When the unfolding function returns Nothing instead of a new seed value, the stream ends.

nonEmpty :: [a] -> Maybe (NonEmpty a) #

nonEmpty efficiently turns a normal list into a NonEmpty stream, producing Nothing if the input is empty.

(<|) :: a -> NonEmpty a -> NonEmpty a infixr 5 #

Prepend an element to the stream.

cons :: a -> NonEmpty a -> NonEmpty a #

Synonym for <|.

inits1 :: NonEmpty a -> NonEmpty (NonEmpty a) #

The inits1 function takes a NonEmpty stream xs and returns all the NonEmpty finite prefixes of xs, starting with the shortest.

inits1 (1 :| [2,3]) == (1 :| []) :| [1 :| [2], 1 :| [2,3]]
inits1 (1 :| []) == (1 :| []) :| []

Since: base-4.18

tails1 :: NonEmpty a -> NonEmpty (NonEmpty a) #

The tails1 function takes a NonEmpty stream xs and returns all the non-empty suffixes of xs, starting with the longest.

tails1 (1 :| [2,3]) == (1 :| [2,3]) :| [2 :| [3], 3 :| []]
tails1 (1 :| []) == (1 :| []) :| []

Since: base-4.18

some1 :: Alternative f => f a -> f (NonEmpty a) #

some1 x sequences x one or more times.

groupWith :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a] #

groupWith operates like group, but uses the provided projection when comparing for equality

groupAllWith :: Ord b => (a -> b) -> [a] -> [NonEmpty a] #

groupAllWith operates like groupWith, but sorts the list first so that each equivalence class has, at most, one list in the output

group1 :: Eq a => NonEmpty a -> NonEmpty (NonEmpty a) #

group1 operates like group, but uses the knowledge that its input is non-empty to produce guaranteed non-empty output.

groupBy1 :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty (NonEmpty a) #

groupBy1 is to group1 as groupBy is to group.

groupWith1 :: Eq b => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) #

sortWith :: Ord o => (a -> o) -> NonEmpty a -> NonEmpty a #

sortWith for NonEmpty, behaves the same as:

sortBy . comparing

prependList :: [a] -> NonEmpty a -> NonEmpty a #

Attach a list at the beginning of a NonEmpty.

>>> prependList [] (1 :| [2,3])
1 :| [2,3]
>>> prependList [negate 1, 0] (1 :| [2, 3])
-1 :| [0,1,2,3]

Since: base-4.16

New and Reconstructed for safety

append :: NonEmpty a -> NonEmpty a -> NonEmpty a Source #

Add an item to the end of a NonEmpty.

appendList :: List a -> NonEmpty a -> NonEmpty a Source #

Add a List to the end of a NonEmpty.

atIndex :: Int -> NonEmpty a -> Maybe a Source #

Obtain the element at the given index, starting at 0. Nothing if the index is not valid.

fromList :: List a -> Maybe (NonEmpty a) Source #

Convert a `List a` to a `NonEmpty a`

prepend :: NonEmpty a -> NonEmpty a -> NonEmpty a Source #

Add an item to the beginning of a NonEmpty.