-- |
-- Module:      Math.NumberTheory.DirichletCharacters
-- Copyright:   (c) 2018 Bhavik Mehta
-- Licence:     MIT
-- Maintainer:  Bhavik Mehta <bhavikmehta8@gmail.com>
--
-- Implementation and enumeration of Dirichlet characters.
--

{-# LANGUAGE CPP                        #-}
{-# LANGUAGE DataKinds                  #-}
{-# LANGUAGE GADTs                      #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures             #-}
{-# LANGUAGE LambdaCase                 #-}
{-# LANGUAGE PatternSynonyms            #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE ViewPatterns               #-}

module Math.NumberTheory.DirichletCharacters
  (
  -- * An absorbing semigroup
  OrZero, pattern Zero, pattern NonZero
  , orZeroToNum
  -- * Dirichlet characters
  , DirichletCharacter
  -- ** Construction
  , indexToChar
  , indicesToChars
  , characterNumber
  , allChars
  , fromTable
  -- ** Evaluation
  , eval
  , evalGeneral
  , evalAll
  -- ** Special Dirichlet characters
  , principalChar
  , isPrincipal
  , orderChar
  -- ** Real Dirichlet characters
  , RealCharacter
  , isRealCharacter
  , getRealChar
  , toRealFunction
  , jacobiCharacter
  -- ** Primitive characters
  , PrimitiveCharacter
  , isPrimitive
  , getPrimitiveChar
  , induced
  , makePrimitive
  , WithNat(..)
  -- * Roots of unity
  , RootOfUnity(..)
  , toRootOfUnity
  , toComplex
  -- * Debugging
  , validChar
  ) where

#if !MIN_VERSION_base(4,12,0)
import Control.Applicative                                 (liftA2)
#endif
import Data.Bits                                           (Bits(..))
import Data.Foldable                                       (for_)
import Data.Functor.Identity                               (Identity(..))
import Data.Kind
import Data.List                                           (mapAccumL, foldl', sort, find, unfoldr)
import Data.Maybe                                          (mapMaybe, fromJust, fromMaybe)
#if MIN_VERSION_base(4,12,0)
import Data.Monoid                                         (Ap(..))
#endif
import Data.Proxy                                          (Proxy(..))
import Data.Ratio                                          ((%), numerator, denominator)
import Data.Semigroup                                      (Semigroup(..),Product(..))
import qualified Data.Vector as V
import qualified Data.Vector.Mutable as MV
import Data.Vector                                         (Vector, (!))
import GHC.TypeNats                                        (Nat, SomeNat(..), natVal, someNatVal)
import Numeric.Natural                                     (Natural)

import Math.NumberTheory.ArithmeticFunctions               (totient)
import Math.NumberTheory.Moduli.Chinese
import Math.NumberTheory.Moduli.Class                      (KnownNat, Mod, getVal)
import Math.NumberTheory.Moduli.Internal                   (isPrimitiveRoot', discreteLogarithmPP)
import Math.NumberTheory.Moduli.Multiplicative             (MultMod(..), isMultElement)
import Math.NumberTheory.Moduli.Singleton                  (Some(..), cyclicGroupFromFactors)
import Math.NumberTheory.Powers.Modular                    (powMod)
import Math.NumberTheory.Primes                            (Prime(..), UniqueFactorisation, factorise, nextPrime)
import Math.NumberTheory.RootsOfUnity
import Math.NumberTheory.Utils.FromIntegral                (wordToInt)
import Math.NumberTheory.Utils

-- | A Dirichlet character mod \(n\) is a group homomorphism from \((\mathbb{Z}/n\mathbb{Z})^*\)
-- to \(\mathbb{C}^*\), represented abstractly by `DirichletCharacter`. In particular, they take
-- values at roots of unity and can be evaluated using `eval`.
-- A Dirichlet character can be extended to a completely multiplicative function on \(\mathbb{Z}\)
-- by assigning the value 0 for \(a\) sharing a common factor with \(n\), using `evalGeneral`.
--
-- There are finitely many possible Dirichlet characters for a given modulus, in particular there
-- are \(\phi(n)\) characters modulo \(n\), where \(\phi\) refers to Euler's `totient` function.
-- This gives rise to `Enum` and `Bounded` instances.
newtype DirichletCharacter (n :: Nat) = Generated [DirichletFactor]

-- | The group (Z/nZ)^* decomposes to a product (Z/2^k0 Z)^* x (Z/p1^k1 Z)^* x ... x (Z/pi^ki Z)^*
-- where n = 2^k0 p1^k1 ... pi^ki, and the pj are odd primes, k0 possibly 0. Thus, a group
-- homomorphism from (Z/nZ)^* is characterised by group homomorphisms from each of these factor
-- groups. Furthermore, for odd p, we have (Z/p^k Z)^* isomorphic to Z / p^(k-1)*(p-1) Z, an
-- additive group, where an isomorphism is specified by a choice of primitive root.
-- Similarly, for k >= 2, (Z/2^k Z)^* is isomorphic to Z/2Z * (Z / 2^(k-2) Z) (and for k < 2
-- it is trivial).  (See @lambda@ for this isomorphism).
-- Thus, to specify a Dirichlet character, it suffices to specify the value of generators
-- of each of these cyclic groups, when primitive roots are given. This data is given by a
-- DirichletFactor.
-- We have the invariant that the factors must be given in strictly increasing order, and the
-- generator is as given by @generator@, and are each non-trivial. These conditions are verified
-- using `validChar`.
data DirichletFactor = OddPrime { _getPrime :: Prime Natural
                                , _getPower :: Word
                                , _getGenerator :: Natural
                                , _getValue :: RootOfUnity
                                }
                     | TwoPower { _getPower2 :: Int -- this ought to be Word, but many applications
                                                    -- needed to use wordToInt, so Int is cleaner
                                                    -- Required to be >= 2
                                , _getFirstValue :: RootOfUnity
                                , _getSecondValue :: RootOfUnity
                                }
                     | Two

instance Eq (DirichletCharacter n) where
  Generated a == Generated b = a == b

instance Eq DirichletFactor where
  TwoPower _ x1 x2 == TwoPower _ y1 y2 = x1 == y1 && x2 == y2
  OddPrime _ _ _ x == OddPrime _ _ _ y = x == y
  Two              == Two              = True
  _ == _ = False

-- | For primes, define the canonical primitive root as the smallest such. For prime powers \(p^k\),
-- either the smallest primitive root \(g\) mod \(p\) works, or \(g+p\) works.
generator :: (Integral a, UniqueFactorisation a) => Prime a -> Word -> a
generator p k
  | k == 1 = modP
  | otherwise = if powMod modP (p'-1) (p'*p') == 1 then modP + p' else modP
  where p' = unPrime p
        modP = case cyclicGroupFromFactors [(p,k)] of
                 Just (Some cg) -> head $ filter (isPrimitiveRoot' cg) [2..p'-1]
                 _ -> error "illegal"

-- | Implement the function \(\lambda\) from page 5 of
-- https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-186.pdf
lambda :: Integer -> Int -> Integer
lambda x e = ((powMod x (2*modulus) largeMod - 1) `shiftR` (e+1)) .&. (modulus - 1)
  where modulus = bit (e-2)
        largeMod = bit (2*e - 1)

-- | For elements of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\), a Dirichlet
-- character evaluates to a root of unity.
eval :: DirichletCharacter n -> MultMod n -> RootOfUnity
eval (Generated ds) m = foldMap (evalFactor m') ds
  where m' = getVal $ multElement m

-- | Evaluate each factor of the Dirichlet character.
evalFactor :: Integer -> DirichletFactor -> RootOfUnity
evalFactor m =
  \case
    OddPrime (toInteger . unPrime -> p) k (toInteger -> a) b ->
      discreteLogarithmPP p k a (m `rem` p^k) `stimes` b
    TwoPower k s b -> (if testBit m 1 then s else mempty)
                   <> lambda (thingy k m) k `stimes` b
    Two -> mempty

thingy :: (Bits p, Num p) => Int -> p -> p
thingy k m = if testBit m 1
                then bit k - m'
                else m'
  where m' = m .&. (bit k - 1)

-- | A character can evaluate to a root of unity or zero: represented by @Nothing@.
evalGeneral :: KnownNat n => DirichletCharacter n -> Mod n -> OrZero RootOfUnity
evalGeneral chi t = case isMultElement t of
                      Nothing -> Zero
                      Just x -> NonZero $ eval chi x

-- | Give the principal character for this modulus: a principal character mod \(n\) is 1 for
-- \(a\) coprime to \(n\), and 0 otherwise.
principalChar :: KnownNat n => DirichletCharacter n
principalChar = minBound

mulChars :: DirichletCharacter n -> DirichletCharacter n -> DirichletCharacter n
mulChars (Generated x) (Generated y) = Generated (zipWith combine x y)
  where combine :: DirichletFactor -> DirichletFactor -> DirichletFactor
        combine Two Two = Two
        combine (OddPrime p k g n) (OddPrime _ _ _ m) =
          OddPrime p k g (n <> m)
        combine (TwoPower k a n) (TwoPower _ b m) =
          TwoPower k (a <> b) (n <> m)
        combine _ _ = error "internal error: malformed DirichletCharacter"

-- | This Semigroup is in fact a group, so @stimes@ can be called with a negative first argument.
instance Semigroup (DirichletCharacter n) where
  (<>) = mulChars
  stimes = stimesChar

instance KnownNat n => Monoid (DirichletCharacter n) where
  mempty = principalChar
  mappend = (<>)

stimesChar :: Integral a => a -> DirichletCharacter n -> DirichletCharacter n
stimesChar s (Generated xs) = Generated (map mult xs)
  where mult :: DirichletFactor -> DirichletFactor
        mult (OddPrime p k g n) = OddPrime p k g (s `stimes` n)
        mult (TwoPower k a b) = TwoPower k (s `stimes` a) (s `stimes` b)
        mult Two = Two

-- | We define `succ` and `pred` with more efficient implementations than
-- @`toEnum` . (+1) . `fromEnum`@.
instance KnownNat n => Enum (DirichletCharacter n) where
  toEnum = indexToChar . fromIntegral
  fromEnum = fromIntegral . characterNumber
  succ x = makeChar x (characterNumber x + 1)
  pred x = makeChar x (characterNumber x - 1)

  enumFromTo x y       = bulkMakeChars x [fromEnum x..fromEnum y]
  enumFrom x           = bulkMakeChars x [fromEnum x..]
  enumFromThenTo x y z = bulkMakeChars x [fromEnum x, fromEnum y..fromEnum z]
  enumFromThen x y     = bulkMakeChars x [fromEnum x, fromEnum y..]

instance KnownNat n => Bounded (DirichletCharacter n) where
  minBound = indexToChar 0
  maxBound = indexToChar (totient n - 1)
    where n = natVal (Proxy :: Proxy n)

-- | We have a (non-canonical) enumeration of dirichlet characters.
characterNumber :: DirichletCharacter n -> Integer
characterNumber (Generated y) = foldl' go 0 y
  where go x (OddPrime p k _ a) = x * m + numerator (fromRootOfUnity a * fromIntegral m)
          where p' = fromIntegral (unPrime p)
                m = p'^(k-1)*(p'-1)
        go x (TwoPower k a b)   = x' * 2 + numerator (fromRootOfUnity a * 2)
          where m = bit (k-2) :: Integer
                x' = x `shiftL` (k-2) + numerator (fromRootOfUnity b * fromIntegral m)
        go x Two = x

-- | Give the dirichlet character from its number.
-- Inverse of `characterNumber`.
indexToChar :: forall n. KnownNat n => Natural -> DirichletCharacter n
indexToChar = runIdentity . indicesToChars . Identity

-- | Give a collection of dirichlet characters from their numbers. This may be more efficient than
-- `indexToChar` for multiple characters, as it prevents some internal recalculations.
indicesToChars :: forall n f. (KnownNat n, Functor f) => f Natural -> f (DirichletCharacter n)
indicesToChars = fmap (Generated . unroll t . (`mod` m))
  where n = natVal (Proxy :: Proxy n)
        (Product m, t) = mkTemplate n

-- | List all characters for the modulus. This is preferred to using @[minBound..maxBound]@.
allChars :: forall n. KnownNat n => [DirichletCharacter n]
allChars = indicesToChars [0..m-1]
  where m = totient $ natVal (Proxy :: Proxy n)

-- | The same as `indexToChar`, but if we're given a character we can create others more efficiently.
makeChar :: Integral a => DirichletCharacter n -> a -> DirichletCharacter n
makeChar x = runIdentity . bulkMakeChars x . Identity

-- | Use one character to make many more: better than indicesToChars since it avoids recalculating
-- some primitive roots
bulkMakeChars :: (Integral a, Functor f) => DirichletCharacter n -> f a -> f (DirichletCharacter n)
bulkMakeChars x = fmap (Generated . unroll t . (`mod` m) . fromIntegral)
  where (Product m, t) = templateFromCharacter x

-- We assign each natural a unique Template, which can be decorated (eg in `unroll`) to
-- form a DirichletCharacter. A Template effectively holds the information carried around
-- in a DirichletFactor which depends only on the modulus of the character.
data Template = OddTemplate { _getPrime'     :: Prime Natural
                            , _getPower'     :: Word
                            , _getGenerator' :: !Natural
                            , _getModulus'   :: !Natural
                            }
              | TwoPTemplate { _getPower2'    :: Int
                             , _getModulus'   :: !Natural
                             } -- the modulus is derivable from the other values, but calculation
                               -- may be expensive, so we pre-calculate it
                               -- morally getModulus should be a prefactored but seems to be
                               -- pointless here
              | TwoTemplate

templateFromCharacter :: DirichletCharacter n -> (Product Natural, [Template])
templateFromCharacter (Generated t) = traverse go t
  where go (OddPrime p k g _) = (Product m, OddTemplate p k g m)
          where p' = unPrime p
                m = p'^(k-1)*(p'-1)
        go (TwoPower k _ _) = (Product (2*m), TwoPTemplate k m)
          where m = bit (k-2)
        go Two = (Product 1, TwoTemplate)

mkTemplate :: Natural -> (Product Natural, [Template])
mkTemplate = go . sort . factorise
  where go :: [(Prime Natural, Word)] -> (Product Natural, [Template])
        go ((unPrime -> 2, 1): xs) = (Product 1, [TwoTemplate]) <> traverse odds xs
        go ((unPrime -> 2, wordToInt -> k): xs) = (Product (2*m), [TwoPTemplate k m]) <> traverse odds xs
          where m = bit (k-2)
        go xs = traverse odds xs
        odds :: (Prime Natural, Word) -> (Product Natural, Template)
        odds (p, k) = (Product m, OddTemplate p k (generator p k) m)
          where p' = unPrime p
                m = p'^(k-1)*(p'-1)

-- the validity of the producted dirichletfactor list here requires the template to be valid
unroll :: [Template] -> Natural -> [DirichletFactor]
unroll t m = snd (mapAccumL func m t)
  where func :: Natural -> Template -> (Natural, DirichletFactor)
        func a (OddTemplate p k g n) = (a1, OddPrime p k g (toRootOfUnity $ (toInteger a2) % (toInteger n)))
          where (a1,a2) = quotRem a n
        func a (TwoPTemplate k n) = (b1, TwoPower k (toRootOfUnity $ (toInteger a2) % 2) (toRootOfUnity $ (toInteger b2) % (toInteger n)))
          where (a1,a2) = quotRem a 2
                (b1,b2) = quotRem a1 n
        func a TwoTemplate = (a, Two)

-- | Test if a given Dirichlet character is prinicpal for its modulus: a principal character mod
-- \(n\) is 1 for \(a\) coprime to \(n\), and 0 otherwise.
isPrincipal :: DirichletCharacter n -> Bool
isPrincipal chi = characterNumber chi == 0

-- | Induce a Dirichlet character to a higher modulus. If \(d \mid n\), then \(a \bmod{n}\) can be
-- reduced to \(a \bmod{d}\). Thus, the multiplicative function on \(\mathbb{Z}/d\mathbb{Z}\)
-- induces a multiplicative function on \(\mathbb{Z}/n\mathbb{Z}\).
--
-- >>> :set -XTypeApplications
-- >>> chi = indexToChar 5 :: DirichletCharacter 45
-- >>> chi2 = induced @135 chi
-- >>> :t chi2
-- Maybe (DirichletCharacter 135)
induced :: forall n d. (KnownNat d, KnownNat n) => DirichletCharacter d -> Maybe (DirichletCharacter n)
induced (Generated start) = if n `rem` d == 0
                            then Just (Generated (combine (snd $ mkTemplate n) start))
                            else Nothing
  where n = natVal (Proxy :: Proxy n)
        d = natVal (Proxy :: Proxy d)
        combine :: [Template] -> [DirichletFactor] -> [DirichletFactor]
        combine [] _ = []
        combine ts [] = map newFactor ts
        combine (t:xs) (y:ys) = case (t,y) of
                                  (TwoTemplate, Two) -> Two: combine xs ys
                                  (TwoTemplate, _) -> Two: combine xs (y:ys)
                                  (TwoPTemplate k _, Two) -> TwoPower k mempty mempty: combine xs ys
                                  (TwoPTemplate k _, TwoPower _ a b) -> TwoPower k a b: combine xs ys
                                  (TwoPTemplate k _, _) -> TwoPower k mempty mempty: combine xs (y:ys)
                                  (OddTemplate p k _ _, OddPrime q _ g a) | p == q -> OddPrime p k g a: combine xs ys
                                  (OddTemplate p k g _, OddPrime q _ _ _) | p < q -> OddPrime p k g mempty: combine xs (y:ys)
                                  _ -> error "internal error in induced: please report this as a bug"
        newFactor :: Template -> DirichletFactor
        newFactor TwoTemplate = Two
        newFactor (TwoPTemplate k _) = TwoPower k mempty mempty
        newFactor (OddTemplate p k g _) = OddPrime p k g mempty
        -- rest (p,k) = OddPrime p k (generator p k) mempty

-- | The <https://en.wikipedia.org/wiki/Jacobi_symbol Jacobi symbol> gives a real Dirichlet
-- character for odd moduli.
jacobiCharacter :: forall n. KnownNat n => Maybe (RealCharacter n)
jacobiCharacter = if odd n
                     then Just $ RealChar $ Generated $ map go $ snd $ mkTemplate n
                     else Nothing
  where n = natVal (Proxy :: Proxy n)
        go :: Template -> DirichletFactor
        go (OddTemplate p k g _) = OddPrime p k g $ toRootOfUnity ((toInteger k) % 2)
          -- jacobi symbol of a primitive root mod p over p is always -1
        go _ = error "internal error in jacobiCharacter: please report this as a bug"
          -- every factor of n should be odd

-- | A Dirichlet character is real if it is real-valued.
newtype RealCharacter n = RealChar { -- | Extract the character itself from a `RealCharacter`.
                                     getRealChar :: DirichletCharacter n
                                   }
                                   deriving Eq

-- | Test if a given `DirichletCharacter` is real, and if so give a `RealCharacter`.
isRealCharacter :: DirichletCharacter n -> Maybe (RealCharacter n)
isRealCharacter t@(Generated xs) = if all real xs then Just (RealChar t) else Nothing
  where real :: DirichletFactor -> Bool
        real (OddPrime _ _ _ a) = a <> a == mempty
        real (TwoPower _ _ b) = b <> b == mempty
        real Two = True

-- TODO: it should be possible to calculate this without eval/evalGeneral
-- and thus avoid using discrete log calculations: consider the order of m
-- inside each of the factor groups?
-- | Evaluate a real Dirichlet character, which can only take values \(-1,0,1\).
toRealFunction :: KnownNat n => RealCharacter n -> Mod n -> Int
toRealFunction (RealChar chi) m = case evalGeneral chi m of
                                    Zero -> 0
                                    NonZero t | t == mempty -> 1
                                    NonZero t | t == RootOfUnity (1 % 2) -> -1
                                    _ -> error "internal error in toRealFunction: please report this as a bug"
                                      -- A real character should not be able to evaluate to
                                      -- anything other than {-1,0,1}, so should not reach this branch

-- | Test if the internal DirichletCharacter structure is valid.
validChar :: forall n. KnownNat n => DirichletCharacter n -> Bool
validChar (Generated xs) = correctDecomposition && all correctPrimitiveRoot xs && all validValued xs
  where correctDecomposition = sort (factorise n) == map getPP xs
        getPP (TwoPower k _ _) = (two, fromIntegral k)
        getPP (OddPrime p k _ _) = (p, k)
        getPP Two = (two,1)
        correctPrimitiveRoot (OddPrime p k g _) = g == generator p k
        correctPrimitiveRoot _ = True
        validValued (TwoPower k a b) = a <> a == mempty && (bit (k-2) :: Integer) `stimes` b == mempty
        validValued (OddPrime (unPrime -> p) k _ a) = (p^(k-1)*(p-1)) `stimes` a == mempty
        validValued Two = True
        n = natVal (Proxy :: Proxy n)
        two = nextPrime 2

-- | Get the order of the Dirichlet Character.
orderChar :: DirichletCharacter n -> Integer
orderChar (Generated xs) = foldl' lcm 1 $ map orderFactor xs
  where orderFactor (TwoPower _ (RootOfUnity a) (RootOfUnity b)) = denominator a `lcm` denominator b
        orderFactor (OddPrime _ _ _ (RootOfUnity a)) = denominator a
        orderFactor Two = 1

-- | Test if a Dirichlet character is <https://en.wikipedia.org/wiki/Dirichlet_character#Primitive_characters_and_conductor primitive>.
isPrimitive :: DirichletCharacter n -> Maybe (PrimitiveCharacter n)
isPrimitive t@(Generated xs) = if all primitive xs then Just (PrimitiveCharacter t) else Nothing
  where primitive :: DirichletFactor -> Bool
        primitive Two = False
        -- for odd p, we're testing if phi(p^(k-1)) `stimes` a is 1, since this means the
        -- character can come from some the smaller modulus p^(k-1)
        primitive (OddPrime _ 1 _ a) = a /= mempty
        primitive (OddPrime (unPrime -> p) k _ a) = (p^(k-2)*(p-1)) `stimes` a /= mempty
        primitive (TwoPower 2 a _) = a /= mempty
        primitive (TwoPower k _ b) = (bit (k-3) :: Integer) `stimes` b /= mempty

-- | A Dirichlet character is primitive if cannot be 'induced' from any character with
-- strictly smaller modulus.
newtype PrimitiveCharacter n = PrimitiveCharacter { -- | Extract the character itself from a `PrimitiveCharacter`.
                                                    getPrimitiveChar :: DirichletCharacter n
                                                    }
                                                    deriving Eq

-- | Wrapper to hide an unknown type-level natural.
data WithNat (a :: Nat -> Type) where
  WithNat :: KnownNat m => a m -> WithNat a

-- | This function also provides access to the new modulus on type level, with a KnownNat instance
makePrimitive :: DirichletCharacter n -> WithNat PrimitiveCharacter
makePrimitive (Generated xs) =
  case someNatVal (product mods) of
    SomeNat (Proxy :: Proxy m) -> WithNat (PrimitiveCharacter (Generated ys) :: PrimitiveCharacter m)
  where (mods,ys) = unzip (mapMaybe prim xs)
        prim :: DirichletFactor -> Maybe (Natural, DirichletFactor)
        prim Two = Nothing
        prim (OddPrime p' k g a) = case find works options of
                                     Nothing -> error "invalid character"
                                     Just (0,_) -> Nothing
                                     Just (i,_) -> Just (p^i, OddPrime p' i g a)
          where options = (0,1): [(i,p^(i-1)*(p-1)) | i <- [1..k]]
                works (_,phi) = phi `stimes` a == mempty
                p = unPrime p'
        prim (TwoPower k a b) = case find worksb options of
                                  Nothing -> error "invalid character"
                                  Just (2,_) | a == mempty -> Nothing
                                  Just (i,_) -> Just (bit i :: Natural, TwoPower i a b)
          where options = [(i, bit (i-2) :: Natural) | i <- [2..k]]
                worksb (_,phi) = phi `stimes` b == mempty

#if !MIN_VERSION_base(4,12,0)
newtype Ap f a = Ap { getAp :: f a }
  deriving (Eq, Functor, Applicative, Monad)

instance (Applicative f, Semigroup a) => Semigroup (Ap f a) where
  (<>) = liftA2 (<>)

instance (Applicative f, Semigroup a, Monoid a) => Monoid (Ap f a) where
  mempty = pure mempty
  mappend = (<>)
#endif

-- | Similar to Maybe, but with different Semigroup and Monoid instances.
type OrZero a = Ap Maybe a

-- | 'Ap' 'Nothing'
pattern Zero :: OrZero a
pattern Zero = Ap Nothing

-- | 'Ap' ('Just' x)
pattern NonZero :: a -> OrZero a
pattern NonZero x = Ap (Just x)

{-# COMPLETE Zero, NonZero #-}

-- | Interpret an `OrZero` as a number, taking the `Zero` case to be 0.
orZeroToNum :: Num a => (b -> a) -> OrZero b -> a
orZeroToNum _ Zero = 0
orZeroToNum f (NonZero x) = f x

-- | In general, evaluating a DirichletCharacter at a point involves solving the discrete logarithm
-- problem, which can be hard: the implementations here are around O(sqrt n).
-- However, evaluating a dirichlet character at every point amounts to solving the discrete
-- logarithm problem at every point also, which can be done together in O(n) time, better than
-- using a complex algorithm at each point separately. Thus, if a large number of evaluations
-- of a dirichlet character are required, `evalAll` will be better than `evalGeneral`, since
-- computations can be shared.
evalAll :: forall n. KnownNat n => DirichletCharacter n -> Vector (OrZero RootOfUnity)
evalAll (Generated xs) = V.generate (fromIntegral n) func
  where n = natVal (Proxy :: Proxy n)
        vectors = map mkVector xs
        func :: Int -> OrZero RootOfUnity
        func m = foldMap go vectors
          where go :: (Int, Vector (OrZero RootOfUnity)) -> OrZero RootOfUnity
                go (modulus,v) = v ! (m `mod` modulus)
        mkVector :: DirichletFactor -> (Int, Vector (OrZero RootOfUnity))
        mkVector Two = (2, V.fromList [Zero, mempty])
        mkVector (OddPrime p k (fromIntegral -> g) a) = (modulus, w)
          where
            p' = unPrime p
            modulus = fromIntegral (p'^k) :: Int
            w = V.create $ do
              v <- MV.replicate modulus Zero
              -- TODO: we're in the ST monad here anyway, could be better to use STRefs to manage
              -- this loop, the current implementation probably doesn't fuse well
              let powers = iterateMaybe go (1,mempty)
                  go (m,x) = if m' > 1
                                then Just (m', x<>a)
                                else Nothing
                    where m' = m*g `mod` modulus
              for_ powers $ \(m,x) -> MV.unsafeWrite v m (NonZero x)
              -- don't bother with bounds check since m was reduced mod p^k
              return v
        -- for powers of two we use lambda directly instead, since the generators of the cyclic
        -- groups aren't obvious; it's possible to get them though:
        -- 5^(lambda(5)^{-1} mod 2^(p-2)) mod 2^p
        mkVector (TwoPower k a b) = (modulus, w)
          where
            modulus = bit k
            w = V.generate modulus f
            f m
              | even m = Zero
              | otherwise = NonZero ((if testBit m 1 then a else mempty) <> lambda (toInteger m'') k `stimes` b)
              where m'' = thingy k m

-- somewhere between unfoldr and iterate
iterateMaybe :: (a -> Maybe a) -> a -> [a]
iterateMaybe f x = unfoldr (fmap (\t -> (t, f t))) (Just x)

-- | Attempt to construct a character from its table of values.
-- An inverse to `evalAll`, defined only on its image.
fromTable :: forall n. KnownNat n => Vector (OrZero RootOfUnity) -> Maybe (DirichletCharacter n)
fromTable v = if length v == fromIntegral n
                 then Generated <$> traverse makeFactor tmpl >>= check
                 else Nothing
  where n = natVal (Proxy :: Proxy n)
        n' = fromIntegral n :: Integer
        tmpl = snd (mkTemplate n)
        check :: DirichletCharacter n -> Maybe (DirichletCharacter n)
        check chi = if evalAll chi == v then Just chi else Nothing
        makeFactor :: Template -> Maybe DirichletFactor
        makeFactor TwoTemplate = Just Two
        makeFactor (TwoPTemplate k _) = TwoPower k <$> getValue (-1,bit k) <*> getValue (exp4 k, bit k)
        makeFactor (OddTemplate p k g _) = OddPrime p k g <$> getValue (toInteger g, toInteger (unPrime p)^k)
        getValue :: (Integer,Integer) -> Maybe RootOfUnity
        getValue (g,m) = getAp (v ! fromInteger (fromJust (chinese (g,m) (1,n' `quot` m)) `mod` n'))

exp4terms :: [Rational]
exp4terms = [4^k % product [1..k] | k <- [0..]]

-- For reasons that aren't clear to me, `exp4` gives the inverse of 1 under lambda, so it gives the generator
-- This is the same as https://oeis.org/A320814
-- In particular, lambda (exp4 n) n == 1 (for n >= 3)
-- I've verified this for 3 <= n <= 2000, so the reasoning in fromTable should be accurate for moduli below 2^2000
exp4 :: Int -> Integer
exp4 n = (`mod` bit n) $ sum $ map (`mod` bit n) $ map (\q -> numerator q * fromMaybe (error "error in exp4") (recipMod (denominator q) (bit n))) $ take n $ exp4terms