backprop-0.2.6.2: Heterogeneous automatic differentation

Copyright(c) Justin Le 2018
LicenseBSD3
Maintainerjustin@jle.im
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Numeric.Backprop.Class

Contents

Description

Provides the Backprop typeclass, a class for values that can be used for backpropagation.

This class replaces the old (version 0.1) API relying on Num.

Since: 0.2.0.0

Synopsis

Backpropagatable types

class Backprop a where Source #

Class of values that can be backpropagated in general.

For instances of Num, these methods can be given by zeroNum, addNum, and oneNum. There are also generic options given in Numeric.Backprop.Class for functors, IsList instances, and Generic instances.

instance Backprop Double where
    zero = zeroNum
    add = addNum
    one = oneNum

If you leave the body of an instance declaration blank, GHC Generics will be used to derive instances if the type has a single constructor and each field is an instance of Backprop.

To ensure that backpropagation works in a sound way, should obey the laws:

identity

Also implies preservation of information, making zipWith (+) an illegal implementation for lists and vectors.

This is only expected to be true up to potential "extra zeroes" in x and y in the result.

commutativity
associativity
idempotence
unital

Note that not all values in the backpropagation process needs all of these methods: Only the "final result" needs one, for example. These are all grouped under one typeclass for convenience in defining instances, and also to talk about sensible laws. For fine-grained control, use the "explicit" versions of library functions (for example, in Numeric.Backprop.Explicit) instead of Backprop based ones.

This typeclass replaces the reliance on Num of the previous API (v0.1). Num is strictly more powerful than Backprop, and is a stronger constraint on types than is necessary for proper backpropagating. In particular, fromInteger is a problem for many types, preventing useful backpropagation for lists, variable-length vectors (like Data.Vector) and variable-size matrices from linear algebra libraries like hmatrix and accelerate.

Since: 0.2.0.0

Minimal complete definition

Nothing

Methods

zero :: a -> a Source #

"Zero out" all components of a value. For scalar values, this should just be const 0. For vectors and matrices, this should set all components to zero, the additive identity.

Should be idempotent:

Should be as lazy as possible. This behavior is observed for all instances provided by this library.

See zeroNum for a pre-built definition for instances of Num and zeroFunctor for a definition for instances of Functor. If left blank, will automatically be genericZero, a pre-built definition for instances of Generic whose fields are all themselves instances of Backprop.

add :: a -> a -> a Source #

Add together two values of a type. To combine contributions of gradients, so should be information-preserving:

Should be as strict as possible. This behavior is observed for all instances provided by this library.

See addNum for a pre-built definition for instances of Num and addIsList for a definition for instances of IsList. If left blank, will automatically be genericAdd, a pre-built definition for instances of Generic with one constructor whose fields are all themselves instances of Backprop.

one :: a -> a Source #

One all components of a value. For scalar values, this should just be const 1. For vectors and matrices, this should set all components to one, the multiplicative identity.

As the library uses it, the most important law is:

That is, one x is the gradient of the identity function with respect to its input.

Ideally should be idempotent:

Should be as lazy as possible. This behavior is observed for all instances provided by this library.

See oneNum for a pre-built definition for instances of Num and oneFunctor for a definition for instances of Functor. If left blank, will automatically be genericOne, a pre-built definition for instances of Generic whose fields are all themselves instances of Backprop.

zero :: (Generic a, GZero (Rep a)) => a -> a Source #

"Zero out" all components of a value. For scalar values, this should just be const 0. For vectors and matrices, this should set all components to zero, the additive identity.

Should be idempotent:

Should be as lazy as possible. This behavior is observed for all instances provided by this library.

See zeroNum for a pre-built definition for instances of Num and zeroFunctor for a definition for instances of Functor. If left blank, will automatically be genericZero, a pre-built definition for instances of Generic whose fields are all themselves instances of Backprop.

add :: (Generic a, GAdd (Rep a)) => a -> a -> a Source #

Add together two values of a type. To combine contributions of gradients, so should be information-preserving:

Should be as strict as possible. This behavior is observed for all instances provided by this library.

See addNum for a pre-built definition for instances of Num and addIsList for a definition for instances of IsList. If left blank, will automatically be genericAdd, a pre-built definition for instances of Generic with one constructor whose fields are all themselves instances of Backprop.

one :: (Generic a, GOne (Rep a)) => a -> a Source #

One all components of a value. For scalar values, this should just be const 1. For vectors and matrices, this should set all components to one, the multiplicative identity.

As the library uses it, the most important law is:

That is, one x is the gradient of the identity function with respect to its input.

Ideally should be idempotent:

Should be as lazy as possible. This behavior is observed for all instances provided by this library.

See oneNum for a pre-built definition for instances of Num and oneFunctor for a definition for instances of Functor. If left blank, will automatically be genericOne, a pre-built definition for instances of Generic whose fields are all themselves instances of Backprop.

Instances
Backprop Double Source # 
Instance details

Defined in Numeric.Backprop.Class

Backprop Float Source # 
Instance details

Defined in Numeric.Backprop.Class

Backprop Int Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Int -> Int Source #

add :: Int -> Int -> Int Source #

one :: Int -> Int Source #

Backprop Integer Source # 
Instance details

Defined in Numeric.Backprop.Class

Backprop Natural Source #

Since: 0.2.1.0

Instance details

Defined in Numeric.Backprop.Class

Backprop Word Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Word -> Word Source #

add :: Word -> Word -> Word Source #

one :: Word -> Word Source #

Backprop Word8 Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Backprop Word16 Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Backprop Word32 Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Backprop Word64 Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Backprop () Source #

add is strict, but zero and one are lazy in their arguments.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: () -> () Source #

add :: () -> () -> () Source #

one :: () -> () Source #

Backprop Void Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Void -> Void Source #

add :: Void -> Void -> Void Source #

one :: Void -> Void Source #

Backprop a => Backprop [a] Source #

add assumes the shorter list has trailing zeroes, and the result has the length of the longest input.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: [a] -> [a] Source #

add :: [a] -> [a] -> [a] Source #

one :: [a] -> [a] Source #

Backprop a => Backprop (Maybe a) Source #

Nothing is treated the same as Just 0. However, zero, add, and one preserve Nothing if all inputs are also Nothing.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Maybe a -> Maybe a Source #

add :: Maybe a -> Maybe a -> Maybe a Source #

one :: Maybe a -> Maybe a Source #

Integral a => Backprop (Ratio a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Ratio a -> Ratio a Source #

add :: Ratio a -> Ratio a -> Ratio a Source #

one :: Ratio a -> Ratio a Source #

RealFloat a => Backprop (Complex a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Complex a -> Complex a Source #

add :: Complex a -> Complex a -> Complex a Source #

one :: Complex a -> Complex a Source #

Backprop a => Backprop (First a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: First a -> First a Source #

add :: First a -> First a -> First a Source #

one :: First a -> First a Source #

Backprop a => Backprop (Last a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Last a -> Last a Source #

add :: Last a -> Last a -> Last a Source #

one :: Last a -> Last a Source #

Backprop a => Backprop (Option a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Option a -> Option a Source #

add :: Option a -> Option a -> Option a Source #

one :: Option a -> Option a Source #

Backprop a => Backprop (Identity a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Backprop a => Backprop (First a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: First a -> First a Source #

add :: First a -> First a -> First a Source #

one :: First a -> First a Source #

Backprop a => Backprop (Last a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Last a -> Last a Source #

add :: Last a -> Last a -> Last a Source #

one :: Last a -> Last a Source #

Backprop a => Backprop (Dual a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Dual a -> Dual a Source #

add :: Dual a -> Dual a -> Dual a Source #

one :: Dual a -> Dual a Source #

Backprop a => Backprop (Sum a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Sum a -> Sum a Source #

add :: Sum a -> Sum a -> Sum a Source #

one :: Sum a -> Sum a Source #

Backprop a => Backprop (Product a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Product a -> Product a Source #

add :: Product a -> Product a -> Product a Source #

one :: Product a -> Product a Source #

Backprop a => Backprop (NonEmpty a) Source #

add assumes the shorter list has trailing zeroes, and the result has the length of the longest input.

Instance details

Defined in Numeric.Backprop.Class

Backprop a => Backprop (IntMap a) Source #

zero and one replace all current values, and add merges keys from both maps, adding in the case of double-occurrences.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: IntMap a -> IntMap a Source #

add :: IntMap a -> IntMap a -> IntMap a Source #

one :: IntMap a -> IntMap a Source #

Backprop a => Backprop (Seq a) Source #

add assumes the shorter sequence has trailing zeroes, and the result has the length of the longest input.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Seq a -> Seq a Source #

add :: Seq a -> Seq a -> Seq a Source #

one :: Seq a -> Seq a Source #

(Unbox a, Backprop a) => Backprop (Vector a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Vector a -> Vector a Source #

add :: Vector a -> Vector a -> Vector a Source #

one :: Vector a -> Vector a Source #

(Storable a, Backprop a) => Backprop (Vector a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Vector a -> Vector a Source #

add :: Vector a -> Vector a -> Vector a Source #

one :: Vector a -> Vector a Source #

(Prim a, Backprop a) => Backprop (Vector a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Vector a -> Vector a Source #

add :: Vector a -> Vector a -> Vector a Source #

one :: Vector a -> Vector a Source #

Backprop a => Backprop (Vector a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Vector a -> Vector a Source #

add :: Vector a -> Vector a -> Vector a Source #

one :: Vector a -> Vector a Source #

Num a => Backprop (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: NumBP a -> NumBP a Source #

add :: NumBP a -> NumBP a -> NumBP a Source #

one :: NumBP a -> NumBP a Source #

Backprop a => Backprop (r -> a) Source #

add adds together results; zero and one act on results.

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (r -> a) -> r -> a Source #

add :: (r -> a) -> (r -> a) -> r -> a Source #

one :: (r -> a) -> r -> a Source #

Backprop (V1 p) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: V1 p -> V1 p Source #

add :: V1 p -> V1 p -> V1 p Source #

one :: V1 p -> V1 p Source #

Backprop (U1 p) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: U1 p -> U1 p Source #

add :: U1 p -> U1 p -> U1 p Source #

one :: U1 p -> U1 p Source #

(Backprop a, Backprop b) => Backprop (a, b) Source #

add is strict

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (a, b) -> (a, b) Source #

add :: (a, b) -> (a, b) -> (a, b) Source #

one :: (a, b) -> (a, b) Source #

(Backprop a, Backprop b) => Backprop (Arg a b) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Arg a b -> Arg a b Source #

add :: Arg a b -> Arg a b -> Arg a b Source #

one :: Arg a b -> Arg a b Source #

Backprop (Proxy a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Proxy a -> Proxy a Source #

add :: Proxy a -> Proxy a -> Proxy a Source #

one :: Proxy a -> Proxy a Source #

(Backprop a, Ord k) => Backprop (Map k a) Source #

zero and one replace all current values, and add merges keys from both maps, adding in the case of double-occurrences.

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Map k a -> Map k a Source #

add :: Map k a -> Map k a -> Map k a Source #

one :: Map k a -> Map k a Source #

(Applicative f, Backprop a) => Backprop (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: ABP f a -> ABP f a Source #

add :: ABP f a -> ABP f a -> ABP f a Source #

one :: ABP f a -> ABP f a Source #

(Vector v a, Num a) => Backprop (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: NumVec v a -> NumVec v a Source #

add :: NumVec v a -> NumVec v a -> NumVec v a Source #

one :: NumVec v a -> NumVec v a Source #

(Backprop a, Reifies s W) => Backprop (BVar s a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Internal

Methods

zero :: BVar s a -> BVar s a Source #

add :: BVar s a -> BVar s a -> BVar s a Source #

one :: BVar s a -> BVar s a Source #

(Backprop a, Backprop b, Backprop c) => Backprop (a, b, c) Source #

add is strict

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (a, b, c) -> (a, b, c) Source #

add :: (a, b, c) -> (a, b, c) -> (a, b, c) Source #

one :: (a, b, c) -> (a, b, c) Source #

(Backprop a, Applicative m) => Backprop (Kleisli m r a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Kleisli m r a -> Kleisli m r a Source #

add :: Kleisli m r a -> Kleisli m r a -> Kleisli m r a Source #

one :: Kleisli m r a -> Kleisli m r a Source #

Backprop w => Backprop (Const w a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Const w a -> Const w a Source #

add :: Const w a -> Const w a -> Const w a Source #

one :: Const w a -> Const w a Source #

Backprop a => Backprop (K1 i a p) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: K1 i a p -> K1 i a p Source #

add :: K1 i a p -> K1 i a p -> K1 i a p Source #

one :: K1 i a p -> K1 i a p Source #

(Backprop (f p), Backprop (g p)) => Backprop ((f :*: g) p) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (f :*: g) p -> (f :*: g) p Source #

add :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p Source #

one :: (f :*: g) p -> (f :*: g) p Source #

(Backprop a, Backprop b, Backprop c, Backprop d) => Backprop (a, b, c, d) Source #

add is strict

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (a, b, c, d) -> (a, b, c, d) Source #

add :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) Source #

one :: (a, b, c, d) -> (a, b, c, d) Source #

(Backprop (f a), Backprop (g a)) => Backprop (Product f g a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Product f g a -> Product f g a Source #

add :: Product f g a -> Product f g a -> Product f g a Source #

one :: Product f g a -> Product f g a Source #

Backprop (f p) => Backprop (M1 i c f p) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: M1 i c f p -> M1 i c f p Source #

add :: M1 i c f p -> M1 i c f p -> M1 i c f p Source #

one :: M1 i c f p -> M1 i c f p Source #

(Backprop a, Backprop b, Backprop c, Backprop d, Backprop e) => Backprop (a, b, c, d, e) Source #

add is strict

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: (a, b, c, d, e) -> (a, b, c, d, e) Source #

add :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) Source #

one :: (a, b, c, d, e) -> (a, b, c, d, e) Source #

Backprop (f (g a)) => Backprop (Compose f g a) Source #

Since: 0.2.2.0

Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: Compose f g a -> Compose f g a Source #

add :: Compose f g a -> Compose f g a -> Compose f g a Source #

one :: Compose f g a -> Compose f g a Source #

Derived methods

zeroNum :: Num a => a -> a Source #

zero for instances of Num.

Is lazy in its argument.

addNum :: Num a => a -> a -> a Source #

add for instances of Num.

oneNum :: Num a => a -> a Source #

one for instances of Num.

Is lazy in its argument.

zeroVec :: (Vector v a, Backprop a) => v a -> v a Source #

zero for instances of Vector.

addVec :: (Vector v a, Backprop a) => v a -> v a -> v a Source #

add for instances of Vector. Automatically pads the end of the shorter vector with zeroes.

oneVec :: (Vector v a, Backprop a) => v a -> v a Source #

one for instances of Vector.

zeroVecNum :: (Vector v a, Num a) => v a -> v a Source #

zero for instances of Vector when the contained type is an instance of Num. Is potentially more performant than zeroVec when the vectors are larger.

See NumVec for a Backprop instance for Vector instances that uses this for zero.

Since: 0.2.4.0

oneVecNum :: (Vector v a, Num a) => v a -> v a Source #

one for instances of Vector when the contained type is an instance of Num. Is potentially more performant than oneVec when the vectors are larger.

See NumVec for a Backprop instance for Vector instances that uses this for one.

Since: 0.2.4.0

zeroFunctor :: (Functor f, Backprop a) => f a -> f a Source #

zero for Functor instances.

addIsList :: (IsList a, Backprop (Item a)) => a -> a -> a Source #

add for instances of IsList. Automatically pads the end of the "shorter" value with zeroes.

addAsList Source #

Arguments

:: Backprop b 
=> (a -> [b])

convert to list (should form isomorphism)

-> ([b] -> a)

convert from list (should form isomorphism)

-> a 
-> a 
-> a 

add for types that are isomorphic to a list. Automatically pads the end of the "shorter" value with zeroes.

oneFunctor :: (Functor f, Backprop a) => f a -> f a Source #

one for instances of Functor.

genericZero :: (Generic a, GZero (Rep a)) => a -> a Source #

zero using GHC Generics; works if all fields are instances of Backprop.

genericAdd :: (Generic a, GAdd (Rep a)) => a -> a -> a Source #

add using GHC Generics; works if all fields are instances of Backprop, but only for values with single constructors.

genericOne :: (Generic a, GOne (Rep a)) => a -> a Source #

one using GHC Generics; works if all fields are instaces of Backprop.

Newtype

newtype ABP f a Source #

A newtype wrapper over an f a for Applicative f that gives a free Backprop instance (as well as Num etc. instances).

Useful for performing backpropagation over functions that require some monadic context (like IO) to perform.

Since: 0.2.1.0

Constructors

ABP 

Fields

Instances
Monad f => Monad (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(>>=) :: ABP f a -> (a -> ABP f b) -> ABP f b #

(>>) :: ABP f a -> ABP f b -> ABP f b #

return :: a -> ABP f a #

fail :: String -> ABP f a #

Functor f => Functor (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fmap :: (a -> b) -> ABP f a -> ABP f b #

(<$) :: a -> ABP f b -> ABP f a #

Applicative f => Applicative (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

pure :: a -> ABP f a #

(<*>) :: ABP f (a -> b) -> ABP f a -> ABP f b #

liftA2 :: (a -> b -> c) -> ABP f a -> ABP f b -> ABP f c #

(*>) :: ABP f a -> ABP f b -> ABP f b #

(<*) :: ABP f a -> ABP f b -> ABP f a #

Foldable f => Foldable (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fold :: Monoid m => ABP f m -> m #

foldMap :: Monoid m => (a -> m) -> ABP f a -> m #

foldr :: (a -> b -> b) -> b -> ABP f a -> b #

foldr' :: (a -> b -> b) -> b -> ABP f a -> b #

foldl :: (b -> a -> b) -> b -> ABP f a -> b #

foldl' :: (b -> a -> b) -> b -> ABP f a -> b #

foldr1 :: (a -> a -> a) -> ABP f a -> a #

foldl1 :: (a -> a -> a) -> ABP f a -> a #

toList :: ABP f a -> [a] #

null :: ABP f a -> Bool #

length :: ABP f a -> Int #

elem :: Eq a => a -> ABP f a -> Bool #

maximum :: Ord a => ABP f a -> a #

minimum :: Ord a => ABP f a -> a #

sum :: Num a => ABP f a -> a #

product :: Num a => ABP f a -> a #

Traversable f => Traversable (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ABP f a -> f0 (ABP f b) #

sequenceA :: Applicative f0 => ABP f (f0 a) -> f0 (ABP f a) #

mapM :: Monad m => (a -> m b) -> ABP f a -> m (ABP f b) #

sequence :: Monad m => ABP f (m a) -> m (ABP f a) #

Alternative f => Alternative (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

empty :: ABP f a #

(<|>) :: ABP f a -> ABP f a -> ABP f a #

some :: ABP f a -> ABP f [a] #

many :: ABP f a -> ABP f [a] #

MonadPlus f => MonadPlus (ABP f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

mzero :: ABP f a #

mplus :: ABP f a -> ABP f a -> ABP f a #

Eq (f a) => Eq (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(==) :: ABP f a -> ABP f a -> Bool #

(/=) :: ABP f a -> ABP f a -> Bool #

(Applicative f, Floating a) => Floating (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

pi :: ABP f a #

exp :: ABP f a -> ABP f a #

log :: ABP f a -> ABP f a #

sqrt :: ABP f a -> ABP f a #

(**) :: ABP f a -> ABP f a -> ABP f a #

logBase :: ABP f a -> ABP f a -> ABP f a #

sin :: ABP f a -> ABP f a #

cos :: ABP f a -> ABP f a #

tan :: ABP f a -> ABP f a #

asin :: ABP f a -> ABP f a #

acos :: ABP f a -> ABP f a #

atan :: ABP f a -> ABP f a #

sinh :: ABP f a -> ABP f a #

cosh :: ABP f a -> ABP f a #

tanh :: ABP f a -> ABP f a #

asinh :: ABP f a -> ABP f a #

acosh :: ABP f a -> ABP f a #

atanh :: ABP f a -> ABP f a #

log1p :: ABP f a -> ABP f a #

expm1 :: ABP f a -> ABP f a #

log1pexp :: ABP f a -> ABP f a #

log1mexp :: ABP f a -> ABP f a #

(Applicative f, Fractional a) => Fractional (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(/) :: ABP f a -> ABP f a -> ABP f a #

recip :: ABP f a -> ABP f a #

fromRational :: Rational -> ABP f a #

(Typeable f, Typeable a, Data (f a)) => Data (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ABP f a -> c (ABP f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ABP f a) #

toConstr :: ABP f a -> Constr #

dataTypeOf :: ABP f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ABP f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ABP f a)) #

gmapT :: (forall b. Data b => b -> b) -> ABP f a -> ABP f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ABP f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ABP f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ABP f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ABP f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ABP f a -> m (ABP f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ABP f a -> m (ABP f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ABP f a -> m (ABP f a) #

(Applicative f, Num a) => Num (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(+) :: ABP f a -> ABP f a -> ABP f a #

(-) :: ABP f a -> ABP f a -> ABP f a #

(*) :: ABP f a -> ABP f a -> ABP f a #

negate :: ABP f a -> ABP f a #

abs :: ABP f a -> ABP f a #

signum :: ABP f a -> ABP f a #

fromInteger :: Integer -> ABP f a #

Ord (f a) => Ord (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

compare :: ABP f a -> ABP f a -> Ordering #

(<) :: ABP f a -> ABP f a -> Bool #

(<=) :: ABP f a -> ABP f a -> Bool #

(>) :: ABP f a -> ABP f a -> Bool #

(>=) :: ABP f a -> ABP f a -> Bool #

max :: ABP f a -> ABP f a -> ABP f a #

min :: ABP f a -> ABP f a -> ABP f a #

Read (f a) => Read (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

readsPrec :: Int -> ReadS (ABP f a) #

readList :: ReadS [ABP f a] #

readPrec :: ReadPrec (ABP f a) #

readListPrec :: ReadPrec [ABP f a] #

Show (f a) => Show (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

showsPrec :: Int -> ABP f a -> ShowS #

show :: ABP f a -> String #

showList :: [ABP f a] -> ShowS #

Generic (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Associated Types

type Rep (ABP f a) :: Type -> Type #

Methods

from :: ABP f a -> Rep (ABP f a) x #

to :: Rep (ABP f a) x -> ABP f a #

NFData (f a) => NFData (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

rnf :: ABP f a -> () #

(Applicative f, Backprop a) => Backprop (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: ABP f a -> ABP f a Source #

add :: ABP f a -> ABP f a -> ABP f a Source #

one :: ABP f a -> ABP f a Source #

type Rep (ABP f a) Source # 
Instance details

Defined in Numeric.Backprop.Class

type Rep (ABP f a) = D1 (MetaData "ABP" "Numeric.Backprop.Class" "backprop-0.2.6.2-Dss2pv0D94nFQ7hzzrDkex" True) (C1 (MetaCons "ABP" PrefixI True) (S1 (MetaSel (Just "runABP") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f a))))

newtype NumBP a Source #

A newtype wrapper over an instance of Num that gives a free Backprop instance.

Useful for things like DerivingVia, or for avoiding orphan instances.

Since: 0.2.1.0

Constructors

NumBP 

Fields

Instances
Monad NumBP Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(>>=) :: NumBP a -> (a -> NumBP b) -> NumBP b #

(>>) :: NumBP a -> NumBP b -> NumBP b #

return :: a -> NumBP a #

fail :: String -> NumBP a #

Functor NumBP Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fmap :: (a -> b) -> NumBP a -> NumBP b #

(<$) :: a -> NumBP b -> NumBP a #

Applicative NumBP Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

pure :: a -> NumBP a #

(<*>) :: NumBP (a -> b) -> NumBP a -> NumBP b #

liftA2 :: (a -> b -> c) -> NumBP a -> NumBP b -> NumBP c #

(*>) :: NumBP a -> NumBP b -> NumBP b #

(<*) :: NumBP a -> NumBP b -> NumBP a #

Foldable NumBP Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fold :: Monoid m => NumBP m -> m #

foldMap :: Monoid m => (a -> m) -> NumBP a -> m #

foldr :: (a -> b -> b) -> b -> NumBP a -> b #

foldr' :: (a -> b -> b) -> b -> NumBP a -> b #

foldl :: (b -> a -> b) -> b -> NumBP a -> b #

foldl' :: (b -> a -> b) -> b -> NumBP a -> b #

foldr1 :: (a -> a -> a) -> NumBP a -> a #

foldl1 :: (a -> a -> a) -> NumBP a -> a #

toList :: NumBP a -> [a] #

null :: NumBP a -> Bool #

length :: NumBP a -> Int #

elem :: Eq a => a -> NumBP a -> Bool #

maximum :: Ord a => NumBP a -> a #

minimum :: Ord a => NumBP a -> a #

sum :: Num a => NumBP a -> a #

product :: Num a => NumBP a -> a #

Traversable NumBP Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

traverse :: Applicative f => (a -> f b) -> NumBP a -> f (NumBP b) #

sequenceA :: Applicative f => NumBP (f a) -> f (NumBP a) #

mapM :: Monad m => (a -> m b) -> NumBP a -> m (NumBP b) #

sequence :: Monad m => NumBP (m a) -> m (NumBP a) #

Eq a => Eq (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(==) :: NumBP a -> NumBP a -> Bool #

(/=) :: NumBP a -> NumBP a -> Bool #

Floating a => Floating (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

pi :: NumBP a #

exp :: NumBP a -> NumBP a #

log :: NumBP a -> NumBP a #

sqrt :: NumBP a -> NumBP a #

(**) :: NumBP a -> NumBP a -> NumBP a #

logBase :: NumBP a -> NumBP a -> NumBP a #

sin :: NumBP a -> NumBP a #

cos :: NumBP a -> NumBP a #

tan :: NumBP a -> NumBP a #

asin :: NumBP a -> NumBP a #

acos :: NumBP a -> NumBP a #

atan :: NumBP a -> NumBP a #

sinh :: NumBP a -> NumBP a #

cosh :: NumBP a -> NumBP a #

tanh :: NumBP a -> NumBP a #

asinh :: NumBP a -> NumBP a #

acosh :: NumBP a -> NumBP a #

atanh :: NumBP a -> NumBP a #

log1p :: NumBP a -> NumBP a #

expm1 :: NumBP a -> NumBP a #

log1pexp :: NumBP a -> NumBP a #

log1mexp :: NumBP a -> NumBP a #

Fractional a => Fractional (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(/) :: NumBP a -> NumBP a -> NumBP a #

recip :: NumBP a -> NumBP a #

fromRational :: Rational -> NumBP a #

Data a => Data (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NumBP a -> c (NumBP a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NumBP a) #

toConstr :: NumBP a -> Constr #

dataTypeOf :: NumBP a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NumBP a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NumBP a)) #

gmapT :: (forall b. Data b => b -> b) -> NumBP a -> NumBP a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NumBP a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NumBP a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NumBP a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NumBP a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NumBP a -> m (NumBP a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NumBP a -> m (NumBP a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NumBP a -> m (NumBP a) #

Num a => Num (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(+) :: NumBP a -> NumBP a -> NumBP a #

(-) :: NumBP a -> NumBP a -> NumBP a #

(*) :: NumBP a -> NumBP a -> NumBP a #

negate :: NumBP a -> NumBP a #

abs :: NumBP a -> NumBP a #

signum :: NumBP a -> NumBP a #

fromInteger :: Integer -> NumBP a #

Ord a => Ord (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

compare :: NumBP a -> NumBP a -> Ordering #

(<) :: NumBP a -> NumBP a -> Bool #

(<=) :: NumBP a -> NumBP a -> Bool #

(>) :: NumBP a -> NumBP a -> Bool #

(>=) :: NumBP a -> NumBP a -> Bool #

max :: NumBP a -> NumBP a -> NumBP a #

min :: NumBP a -> NumBP a -> NumBP a #

Read a => Read (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Show a => Show (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

showsPrec :: Int -> NumBP a -> ShowS #

show :: NumBP a -> String #

showList :: [NumBP a] -> ShowS #

Generic (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Associated Types

type Rep (NumBP a) :: Type -> Type #

Methods

from :: NumBP a -> Rep (NumBP a) x #

to :: Rep (NumBP a) x -> NumBP a #

NFData a => NFData (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

rnf :: NumBP a -> () #

Num a => Backprop (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: NumBP a -> NumBP a Source #

add :: NumBP a -> NumBP a -> NumBP a Source #

one :: NumBP a -> NumBP a Source #

type Rep (NumBP a) Source # 
Instance details

Defined in Numeric.Backprop.Class

type Rep (NumBP a) = D1 (MetaData "NumBP" "Numeric.Backprop.Class" "backprop-0.2.6.2-Dss2pv0D94nFQ7hzzrDkex" True) (C1 (MetaCons "NumBP" PrefixI True) (S1 (MetaSel (Just "runNumBP") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

newtype NumVec v a Source #

Newtype wrapper around a v a for Vector v a, that gives a more efficient Backprop instance for long vectors when a is an instance of Num. The normal Backprop instance for vectors will map zero or one over all items; this instance will completely ignore the contents of the original vector and instead produce a new vector of the same length, with all 0 or 1 using the Num instance of a (essentially using zeroVecNum and oneVecNum instead of zeroVec and oneVec).

add is essentially the same as normal, but using + instead of the type's add.

Since: 0.2.4.0

Constructors

NumVec 

Fields

Instances
Monad v => Monad (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(>>=) :: NumVec v a -> (a -> NumVec v b) -> NumVec v b #

(>>) :: NumVec v a -> NumVec v b -> NumVec v b #

return :: a -> NumVec v a #

fail :: String -> NumVec v a #

Functor v => Functor (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fmap :: (a -> b) -> NumVec v a -> NumVec v b #

(<$) :: a -> NumVec v b -> NumVec v a #

Applicative v => Applicative (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

pure :: a -> NumVec v a #

(<*>) :: NumVec v (a -> b) -> NumVec v a -> NumVec v b #

liftA2 :: (a -> b -> c) -> NumVec v a -> NumVec v b -> NumVec v c #

(*>) :: NumVec v a -> NumVec v b -> NumVec v b #

(<*) :: NumVec v a -> NumVec v b -> NumVec v a #

Foldable v => Foldable (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

fold :: Monoid m => NumVec v m -> m #

foldMap :: Monoid m => (a -> m) -> NumVec v a -> m #

foldr :: (a -> b -> b) -> b -> NumVec v a -> b #

foldr' :: (a -> b -> b) -> b -> NumVec v a -> b #

foldl :: (b -> a -> b) -> b -> NumVec v a -> b #

foldl' :: (b -> a -> b) -> b -> NumVec v a -> b #

foldr1 :: (a -> a -> a) -> NumVec v a -> a #

foldl1 :: (a -> a -> a) -> NumVec v a -> a #

toList :: NumVec v a -> [a] #

null :: NumVec v a -> Bool #

length :: NumVec v a -> Int #

elem :: Eq a => a -> NumVec v a -> Bool #

maximum :: Ord a => NumVec v a -> a #

minimum :: Ord a => NumVec v a -> a #

sum :: Num a => NumVec v a -> a #

product :: Num a => NumVec v a -> a #

Traversable v => Traversable (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

traverse :: Applicative f => (a -> f b) -> NumVec v a -> f (NumVec v b) #

sequenceA :: Applicative f => NumVec v (f a) -> f (NumVec v a) #

mapM :: Monad m => (a -> m b) -> NumVec v a -> m (NumVec v b) #

sequence :: Monad m => NumVec v (m a) -> m (NumVec v a) #

Alternative v => Alternative (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

empty :: NumVec v a #

(<|>) :: NumVec v a -> NumVec v a -> NumVec v a #

some :: NumVec v a -> NumVec v [a] #

many :: NumVec v a -> NumVec v [a] #

MonadPlus v => MonadPlus (NumVec v) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

mzero :: NumVec v a #

mplus :: NumVec v a -> NumVec v a -> NumVec v a #

Eq (v a) => Eq (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

(==) :: NumVec v a -> NumVec v a -> Bool #

(/=) :: NumVec v a -> NumVec v a -> Bool #

(Typeable v, Typeable a, Data (v a)) => Data (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NumVec v a -> c (NumVec v a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NumVec v a) #

toConstr :: NumVec v a -> Constr #

dataTypeOf :: NumVec v a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NumVec v a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NumVec v a)) #

gmapT :: (forall b. Data b => b -> b) -> NumVec v a -> NumVec v a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NumVec v a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NumVec v a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NumVec v a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NumVec v a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NumVec v a -> m (NumVec v a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NumVec v a -> m (NumVec v a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NumVec v a -> m (NumVec v a) #

Ord (v a) => Ord (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

compare :: NumVec v a -> NumVec v a -> Ordering #

(<) :: NumVec v a -> NumVec v a -> Bool #

(<=) :: NumVec v a -> NumVec v a -> Bool #

(>) :: NumVec v a -> NumVec v a -> Bool #

(>=) :: NumVec v a -> NumVec v a -> Bool #

max :: NumVec v a -> NumVec v a -> NumVec v a #

min :: NumVec v a -> NumVec v a -> NumVec v a #

Read (v a) => Read (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Show (v a) => Show (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

showsPrec :: Int -> NumVec v a -> ShowS #

show :: NumVec v a -> String #

showList :: [NumVec v a] -> ShowS #

Generic (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Associated Types

type Rep (NumVec v a) :: Type -> Type #

Methods

from :: NumVec v a -> Rep (NumVec v a) x #

to :: Rep (NumVec v a) x -> NumVec v a #

NFData (v a) => NFData (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

rnf :: NumVec v a -> () #

(Vector v a, Num a) => Backprop (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

zero :: NumVec v a -> NumVec v a Source #

add :: NumVec v a -> NumVec v a -> NumVec v a Source #

one :: NumVec v a -> NumVec v a Source #

type Rep (NumVec v a) Source # 
Instance details

Defined in Numeric.Backprop.Class

type Rep (NumVec v a) = D1 (MetaData "NumVec" "Numeric.Backprop.Class" "backprop-0.2.6.2-Dss2pv0D94nFQ7hzzrDkex" True) (C1 (MetaCons "NumVec" PrefixI True) (S1 (MetaSel (Just "runNumVec") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (v a))))

Generics

class GZero f Source #

Helper class for automatically deriving zero using GHC Generics.

Minimal complete definition

gzero

Instances
GZero (V1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: V1 t -> V1 t

GZero (U1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: U1 t -> U1 t

Backprop a => GZero (K1 i a :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: K1 i a t -> K1 i a t

(GZero f, GZero g) => GZero (f :+: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: (f :+: g) t -> (f :+: g) t

(GZero f, GZero g) => GZero (f :*: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: (f :*: g) t -> (f :*: g) t

GZero f => GZero (M1 i c f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: M1 i c f t -> M1 i c f t

GZero f => GZero (f :.: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gzero :: (f :.: g) t -> (f :.: g) t

class GAdd f Source #

Helper class for automatically deriving add using GHC Generics.

Minimal complete definition

gadd

Instances
GAdd (V1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: V1 t -> V1 t -> V1 t

GAdd (U1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: U1 t -> U1 t -> U1 t

Backprop a => GAdd (K1 i a :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: K1 i a t -> K1 i a t -> K1 i a t

(GAdd f, GAdd g) => GAdd (f :*: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: (f :*: g) t -> (f :*: g) t -> (f :*: g) t

GAdd f => GAdd (M1 i c f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: M1 i c f t -> M1 i c f t -> M1 i c f t

GAdd f => GAdd (f :.: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gadd :: (f :.: g) t -> (f :.: g) t -> (f :.: g) t

class GOne f Source #

Helper class for automatically deriving one using GHC Generics.

Minimal complete definition

gone

Instances
GOne (V1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: V1 t -> V1 t

GOne (U1 :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: U1 t -> U1 t

Backprop a => GOne (K1 i a :: Type -> Type) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: K1 i a t -> K1 i a t

(GOne f, GOne g) => GOne (f :+: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: (f :+: g) t -> (f :+: g) t

(GOne f, GOne g) => GOne (f :*: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: (f :*: g) t -> (f :*: g) t

GOne f => GOne (M1 i c f) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: M1 i c f t -> M1 i c f t

GOne f => GOne (f :.: g) Source # 
Instance details

Defined in Numeric.Backprop.Class

Methods

gone :: (f :.: g) t -> (f :.: g) t