{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash, UnboxedTuples #-}
{-# OPTIONS_HADDOCK not-home #-}
#include "MachDeps.h"
module GHC.Word (
    Word(..), Word8(..), Word16(..), Word32(..), Word64(..),
    
    uncheckedShiftL64#,
    uncheckedShiftRL64#,
    
    byteSwap16,
    byteSwap32,
    byteSwap64,
    
    bitReverse8,
    bitReverse16,
    bitReverse32,
    bitReverse64,
    
    
    eqWord, neWord, gtWord, geWord, ltWord, leWord,
    eqWord8, neWord8, gtWord8, geWord8, ltWord8, leWord8,
    eqWord16, neWord16, gtWord16, geWord16, ltWord16, leWord16,
    eqWord32, neWord32, gtWord32, geWord32, ltWord32, leWord32,
    eqWord64, neWord64, gtWord64, geWord64, ltWord64, leWord64
    ) where
import Data.Maybe
import GHC.Prim
import GHC.Base
import GHC.Bits
import GHC.Enum
import GHC.Num
import GHC.Real
import GHC.Ix
import GHC.Show
data {-# CTYPE "HsWord8" #-} Word8
    = W8# Word8#
instance Eq Word8 where
    == :: Word8 -> Word8 -> Bool
(==) = Word8 -> Word8 -> Bool
eqWord8
    /= :: Word8 -> Word8 -> Bool
(/=) = Word8 -> Word8 -> Bool
neWord8
eqWord8, neWord8 :: Word8 -> Word8 -> Bool
eqWord8 :: Word8 -> Word8 -> Bool
eqWord8 (W8# Word8#
x) (W8# Word8#
y) = Int# -> Bool
isTrue# ((Word8# -> Word#
word8ToWord# Word8#
x) Word# -> Word# -> Int#
`eqWord#` (Word8# -> Word#
word8ToWord# Word8#
y))
neWord8 :: Word8 -> Word8 -> Bool
neWord8 (W8# Word8#
x) (W8# Word8#
y) = Int# -> Bool
isTrue# ((Word8# -> Word#
word8ToWord# Word8#
x) Word# -> Word# -> Int#
`neWord#` (Word8# -> Word#
word8ToWord# Word8#
y))
{-# INLINE [1] eqWord8 #-}
{-# INLINE [1] neWord8 #-}
instance Ord Word8 where
    < :: Word8 -> Word8 -> Bool
(<)  = Word8 -> Word8 -> Bool
ltWord8
    <= :: Word8 -> Word8 -> Bool
(<=) = Word8 -> Word8 -> Bool
leWord8
    >= :: Word8 -> Word8 -> Bool
(>=) = Word8 -> Word8 -> Bool
geWord8
    > :: Word8 -> Word8 -> Bool
(>)  = Word8 -> Word8 -> Bool
gtWord8
{-# INLINE [1] gtWord8 #-}
{-# INLINE [1] geWord8 #-}
{-# INLINE [1] ltWord8 #-}
{-# INLINE [1] leWord8 #-}
gtWord8, geWord8, ltWord8, leWord8 :: Word8 -> Word8 -> Bool
(W8# Word8#
x) gtWord8 :: Word8 -> Word8 -> Bool
`gtWord8` (W8# Word8#
y) = Int# -> Bool
isTrue# (Word8#
x Word8# -> Word8# -> Int#
`gtWord8#` Word8#
y)
(W8# Word8#
x) geWord8 :: Word8 -> Word8 -> Bool
`geWord8` (W8# Word8#
y) = Int# -> Bool
isTrue# (Word8#
x Word8# -> Word8# -> Int#
`geWord8#` Word8#
y)
(W8# Word8#
x) ltWord8 :: Word8 -> Word8 -> Bool
`ltWord8` (W8# Word8#
y) = Int# -> Bool
isTrue# (Word8#
x Word8# -> Word8# -> Int#
`ltWord8#` Word8#
y)
(W8# Word8#
x) leWord8 :: Word8 -> Word8 -> Bool
`leWord8` (W8# Word8#
y) = Int# -> Bool
isTrue# (Word8#
x Word8# -> Word8# -> Int#
`leWord8#` Word8#
y)
instance Show Word8 where
    showsPrec :: Int -> Word8 -> ShowS
showsPrec Int
p Word8
x = Int -> Int -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
p (Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
x :: Int)
instance Num Word8 where
    (W8# Word8#
x#) + :: Word8 -> Word8 -> Word8
+ (W8# Word8#
y#)    = Word8# -> Word8
W8# (Word8#
x# Word8# -> Word8# -> Word8#
`plusWord8#` Word8#
y#)
    (W8# Word8#
x#) - :: Word8 -> Word8 -> Word8
- (W8# Word8#
y#)    = Word8# -> Word8
W8# (Word8#
x# Word8# -> Word8# -> Word8#
`subWord8#` Word8#
y#)
    (W8# Word8#
x#) * :: Word8 -> Word8 -> Word8
* (W8# Word8#
y#)    = Word8# -> Word8
W8# (Word8#
x# Word8# -> Word8# -> Word8#
`timesWord8#` Word8#
y#)
    negate :: Word8 -> Word8
negate (W8# Word8#
x#)        = Word8# -> Word8
W8# (Int8# -> Word8#
int8ToWord8# (Int8# -> Int8#
negateInt8# (Word8# -> Int8#
word8ToInt8# Word8#
x#)))
    abs :: Word8 -> Word8
abs Word8
x                  = Word8
x
    signum :: Word8 -> Word8
signum Word8
0               = Word8
0
    signum Word8
_               = Word8
1
    fromInteger :: Integer -> Word8
fromInteger Integer
i          = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# (Integer -> Word#
integerToWord# Integer
i))
instance Real Word8 where
    toRational :: Word8 -> Rational
toRational Word8
x = Word8 -> Integer
forall a. Integral a => a -> Integer
toInteger Word8
x Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
1
instance Enum Word8 where
    succ :: Word8 -> Word8
succ Word8
x
        | Word8
x Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
forall a. Bounded a => a
maxBound = Word8
x Word8 -> Word8 -> Word8
forall a. Num a => a -> a -> a
+ Word8
1
        | Bool
otherwise     = String -> Word8
forall a. String -> a
succError String
"Word8"
    pred :: Word8 -> Word8
pred Word8
x
        | Word8
x Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
forall a. Bounded a => a
minBound = Word8
x Word8 -> Word8 -> Word8
forall a. Num a => a -> a -> a
- Word8
1
        | Bool
otherwise     = String -> Word8
forall a. String -> a
predError String
"Word8"
    toEnum :: Int -> Word8
toEnum i :: Int
i@(I# Int#
i#)
        | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word8
forall a. Bounded a => a
maxBound::Word8)
                        = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# (Int# -> Word#
int2Word# Int#
i#))
        | Bool
otherwise     = String -> Int -> (Word8, Word8) -> Word8
forall a b. Show a => String -> Int -> (a, a) -> b
toEnumError String
"Word8" Int
i (Word8
forall a. Bounded a => a
minBound::Word8, Word8
forall a. Bounded a => a
maxBound::Word8)
    fromEnum :: Word8 -> Int
fromEnum (W8# Word8#
x#)   = Int# -> Int
I# (Word# -> Int#
word2Int# (Word8# -> Word#
word8ToWord# Word8#
x#))
    
    {-# INLINE enumFrom #-}
    enumFrom :: Word8 -> [Word8]
enumFrom            = Word8 -> [Word8]
forall a. (Enum a, Bounded a) => a -> [a]
boundedEnumFrom
    
    {-# INLINE enumFromThen #-}
    enumFromThen :: Word8 -> Word8 -> [Word8]
enumFromThen        = Word8 -> Word8 -> [Word8]
forall a. (Enum a, Bounded a) => a -> a -> [a]
boundedEnumFromThen
instance Integral Word8 where
    
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}
    quot :: Word8 -> Word8 -> Word8
quot    (W8# Word8#
x#) y :: Word8
y@(W8# Word8#
y#)
        | Word8
y Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
0                  = Word8# -> Word8
W8# (Word8#
x# Word8# -> Word8# -> Word8#
`quotWord8#` Word8#
y#)
        | Bool
otherwise               = Word8
forall a. a
divZeroError
    rem :: Word8 -> Word8 -> Word8
rem     (W8# Word8#
x#) y :: Word8
y@(W8# Word8#
y#)
        | Word8
y Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
0                  = Word8# -> Word8
W8# (Word8#
x# Word8# -> Word8# -> Word8#
`remWord8#` Word8#
y#)
        | Bool
otherwise               = Word8
forall a. a
divZeroError
    quotRem :: Word8 -> Word8 -> (Word8, Word8)
quotRem (W8# Word8#
x#) y :: Word8
y@(W8# Word8#
y#)
        | Word8
y Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
0                  = case Word8#
x# Word8# -> Word8# -> (# Word8#, Word8# #)
`quotRemWord8#` Word8#
y# of
                                      (# Word8#
q, Word8#
r #) -> (Word8# -> Word8
W8# Word8#
q, Word8# -> Word8
W8# Word8#
r)
        | Bool
otherwise               = (Word8, Word8)
forall a. a
divZeroError
    div :: Word8 -> Word8 -> Word8
div    Word8
x Word8
y = Word8 -> Word8 -> Word8
forall a. Integral a => a -> a -> a
quot Word8
x Word8
y
    mod :: Word8 -> Word8 -> Word8
mod    Word8
x Word8
y = Word8 -> Word8 -> Word8
forall a. Integral a => a -> a -> a
rem Word8
x Word8
y
    divMod :: Word8 -> Word8 -> (Word8, Word8)
divMod Word8
x Word8
y = Word8 -> Word8 -> (Word8, Word8)
forall a. Integral a => a -> a -> (a, a)
quotRem Word8
x Word8
y
    toInteger :: Word8 -> Integer
toInteger (W8# Word8#
x#)            = Int# -> Integer
IS (Word# -> Int#
word2Int# (Word8# -> Word#
word8ToWord# Word8#
x#))
instance Bounded Word8 where
    minBound :: Word8
minBound = Word8
0
    maxBound :: Word8
maxBound = Word8
0xFF
instance Ix Word8 where
    range :: (Word8, Word8) -> [Word8]
range (Word8
m,Word8
n)         = [Word8
m..Word8
n]
    unsafeIndex :: (Word8, Word8) -> Word8 -> Int
unsafeIndex (Word8
m,Word8
_) Word8
i = Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word8
i Word8 -> Word8 -> Word8
forall a. Num a => a -> a -> a
- Word8
m)
    inRange :: (Word8, Word8) -> Word8 -> Bool
inRange (Word8
m,Word8
n) Word8
i     = Word8
m Word8 -> Word8 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word8
i Bool -> Bool -> Bool
&& Word8
i Word8 -> Word8 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word8
n
instance Bits Word8 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}
    (W8# Word8#
x#) .&. :: Word8 -> Word8 -> Word8
.&.   (W8# Word8#
y#)   = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Word# -> Word#
`and#` (Word8# -> Word#
word8ToWord# Word8#
y#)))
    (W8# Word8#
x#) .|. :: Word8 -> Word8 -> Word8
.|.   (W8# Word8#
y#)   = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Word# -> Word#
`or#`  (Word8# -> Word#
word8ToWord# Word8#
y#)))
    (W8# Word8#
x#) xor :: Word8 -> Word8 -> Word8
`xor` (W8# Word8#
y#)   = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Word# -> Word#
`xor#` (Word8# -> Word#
word8ToWord# Word8#
y#)))
    complement :: Word8 -> Word8
complement (W8# Word8#
x#)       = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# (Word# -> Word#
not# (Word8# -> Word#
word8ToWord# Word8#
x#)))
    (W8# Word8#
x#) shift :: Word8 -> Int -> Word8
`shift` (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#) = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise           = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`shiftRL#` Int# -> Int#
negateInt# Int#
i#))
    (W8# Word8#
x#) shiftL :: Word8 -> Int -> Word8
`shiftL`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#) = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise           = Word8
forall a. a
overflowError
    (W8# Word8#
x#) unsafeShiftL :: Word8 -> Int -> Word8
`unsafeShiftL` (I# Int#
i#) =
        Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i#))
    (W8# Word8#
x#) shiftR :: Word8 -> Int -> Word8
`shiftR`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#) = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`shiftRL#` Int#
i#))
        | Bool
otherwise           = Word8
forall a. a
overflowError
    (W8# Word8#
x#) unsafeShiftR :: Word8 -> Int -> Word8
`unsafeShiftR` (I# Int#
i#) = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` Int#
i#))
    (W8# Word8#
x#) rotate :: Word8 -> Int -> Word8
`rotate`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i'# Int# -> Int# -> Int#
==# Int#
0#) = Word8# -> Word8
W8# Word8#
x#
        | Bool
otherwise  = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# (((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i'#) Word# -> Word# -> Word#
`or#`
                                          ((Word8# -> Word#
word8ToWord# Word8#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` (Int#
8# Int# -> Int# -> Int#
-# Int#
i'#))))
        where
        !i'# :: Int#
i'# = Word# -> Int#
word2Int# (Int# -> Word#
int2Word# Int#
i# Word# -> Word# -> Word#
`and#` Word#
7##)
    bitSizeMaybe :: Word8 -> Maybe Int
bitSizeMaybe Word8
i            = Int -> Maybe Int
forall a. a -> Maybe a
Just (Word8 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word8
i)
    bitSize :: Word8 -> Int
bitSize Word8
i                 = Word8 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word8
i
    isSigned :: Word8 -> Bool
isSigned Word8
_                = Bool
False
    popCount :: Word8 -> Int
popCount (W8# Word8#
x#)         = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
popCnt8# (Word8# -> Word#
word8ToWord# Word8#
x#)))
    bit :: Int -> Word8
bit Int
i                     = Int -> Word8
forall a. (Bits a, Num a) => Int -> a
bitDefault Int
i
    testBit :: Word8 -> Int -> Bool
testBit Word8
a Int
i               = Word8 -> Int -> Bool
forall a. (Bits a, Num a) => a -> Int -> Bool
testBitDefault Word8
a Int
i
instance FiniteBits Word8 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize :: Word8 -> Int
finiteBitSize Word8
_ = Int
8
    countLeadingZeros :: Word8 -> Int
countLeadingZeros  (W8# Word8#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
clz8# (Word8# -> Word#
word8ToWord# Word8#
x#)))
    countTrailingZeros :: Word8 -> Int
countTrailingZeros (W8# Word8#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
ctz8# (Word8# -> Word#
word8ToWord# Word8#
x#)))
{-# RULES
"properFraction/Float->(Word8,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word8) n, y :: Float) }
"truncate/Float->Word8"
    truncate = (fromIntegral :: Int -> Word8) . (truncate :: Float -> Int)
"floor/Float->Word8"
    floor    = (fromIntegral :: Int -> Word8) . (floor :: Float -> Int)
"ceiling/Float->Word8"
    ceiling  = (fromIntegral :: Int -> Word8) . (ceiling :: Float -> Int)
"round/Float->Word8"
    round    = (fromIntegral :: Int -> Word8) . (round  :: Float -> Int)
  #-}
{-# RULES
"properFraction/Double->(Word8,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word8) n, y :: Double) }
"truncate/Double->Word8"
    truncate = (fromIntegral :: Int -> Word8) . (truncate :: Double -> Int)
"floor/Double->Word8"
    floor    = (fromIntegral :: Int -> Word8) . (floor :: Double -> Int)
"ceiling/Double->Word8"
    ceiling  = (fromIntegral :: Int -> Word8) . (ceiling :: Double -> Int)
"round/Double->Word8"
    round    = (fromIntegral :: Int -> Word8) . (round  :: Double -> Int)
  #-}
data {-# CTYPE "HsWord16" #-} Word16 = W16# Word16#
instance Eq Word16 where
    == :: Word16 -> Word16 -> Bool
(==) = Word16 -> Word16 -> Bool
eqWord16
    /= :: Word16 -> Word16 -> Bool
(/=) = Word16 -> Word16 -> Bool
neWord16
eqWord16, neWord16 :: Word16 -> Word16 -> Bool
eqWord16 :: Word16 -> Word16 -> Bool
eqWord16 (W16# Word16#
x) (W16# Word16#
y) = Int# -> Bool
isTrue# ((Word16# -> Word#
word16ToWord# Word16#
x) Word# -> Word# -> Int#
`eqWord#` (Word16# -> Word#
word16ToWord# Word16#
y))
neWord16 :: Word16 -> Word16 -> Bool
neWord16 (W16# Word16#
x) (W16# Word16#
y) = Int# -> Bool
isTrue# ((Word16# -> Word#
word16ToWord# Word16#
x) Word# -> Word# -> Int#
`neWord#` (Word16# -> Word#
word16ToWord# Word16#
y))
{-# INLINE [1] eqWord16 #-}
{-# INLINE [1] neWord16 #-}
instance Ord Word16 where
    < :: Word16 -> Word16 -> Bool
(<)  = Word16 -> Word16 -> Bool
ltWord16
    <= :: Word16 -> Word16 -> Bool
(<=) = Word16 -> Word16 -> Bool
leWord16
    >= :: Word16 -> Word16 -> Bool
(>=) = Word16 -> Word16 -> Bool
geWord16
    > :: Word16 -> Word16 -> Bool
(>)  = Word16 -> Word16 -> Bool
gtWord16
{-# INLINE [1] gtWord16 #-}
{-# INLINE [1] geWord16 #-}
{-# INLINE [1] ltWord16 #-}
{-# INLINE [1] leWord16 #-}
gtWord16, geWord16, ltWord16, leWord16 :: Word16 -> Word16 -> Bool
(W16# Word16#
x) gtWord16 :: Word16 -> Word16 -> Bool
`gtWord16` (W16# Word16#
y) = Int# -> Bool
isTrue# (Word16#
x Word16# -> Word16# -> Int#
`gtWord16#` Word16#
y)
(W16# Word16#
x) geWord16 :: Word16 -> Word16 -> Bool
`geWord16` (W16# Word16#
y) = Int# -> Bool
isTrue# (Word16#
x Word16# -> Word16# -> Int#
`geWord16#` Word16#
y)
(W16# Word16#
x) ltWord16 :: Word16 -> Word16 -> Bool
`ltWord16` (W16# Word16#
y) = Int# -> Bool
isTrue# (Word16#
x Word16# -> Word16# -> Int#
`ltWord16#` Word16#
y)
(W16# Word16#
x) leWord16 :: Word16 -> Word16 -> Bool
`leWord16` (W16# Word16#
y) = Int# -> Bool
isTrue# (Word16#
x Word16# -> Word16# -> Int#
`leWord16#` Word16#
y)
instance Show Word16 where
    showsPrec :: Int -> Word16 -> ShowS
showsPrec Int
p Word16
x = Int -> Int -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
p (Word16 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word16
x :: Int)
instance Num Word16 where
    (W16# Word16#
x#) + :: Word16 -> Word16 -> Word16
+ (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word16#
x# Word16# -> Word16# -> Word16#
`plusWord16#` Word16#
y#)
    (W16# Word16#
x#) - :: Word16 -> Word16 -> Word16
- (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word16#
x# Word16# -> Word16# -> Word16#
`subWord16#` Word16#
y#)
    (W16# Word16#
x#) * :: Word16 -> Word16 -> Word16
* (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word16#
x# Word16# -> Word16# -> Word16#
`timesWord16#` Word16#
y#)
    negate :: Word16 -> Word16
negate (W16# Word16#
x#)       = Word16# -> Word16
W16# (Int16# -> Word16#
int16ToWord16# (Int16# -> Int16#
negateInt16# (Word16# -> Int16#
word16ToInt16# Word16#
x#)))
    abs :: Word16 -> Word16
abs Word16
x                  = Word16
x
    signum :: Word16 -> Word16
signum Word16
0               = Word16
0
    signum Word16
_               = Word16
1
    fromInteger :: Integer -> Word16
fromInteger Integer
i          = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (Integer -> Word#
integerToWord# Integer
i))
instance Real Word16 where
    toRational :: Word16 -> Rational
toRational Word16
x = Word16 -> Integer
forall a. Integral a => a -> Integer
toInteger Word16
x Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
1
instance Enum Word16 where
    succ :: Word16 -> Word16
succ Word16
x
        | Word16
x Word16 -> Word16 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word16
forall a. Bounded a => a
maxBound = Word16
x Word16 -> Word16 -> Word16
forall a. Num a => a -> a -> a
+ Word16
1
        | Bool
otherwise     = String -> Word16
forall a. String -> a
succError String
"Word16"
    pred :: Word16 -> Word16
pred Word16
x
        | Word16
x Word16 -> Word16 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word16
forall a. Bounded a => a
minBound = Word16
x Word16 -> Word16 -> Word16
forall a. Num a => a -> a -> a
- Word16
1
        | Bool
otherwise     = String -> Word16
forall a. String -> a
predError String
"Word16"
    toEnum :: Int -> Word16
toEnum i :: Int
i@(I# Int#
i#)
        | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Word16 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
forall a. Bounded a => a
maxBound::Word16)
                        = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (Int# -> Word#
int2Word# Int#
i#))
        | Bool
otherwise     = String -> Int -> (Word16, Word16) -> Word16
forall a b. Show a => String -> Int -> (a, a) -> b
toEnumError String
"Word16" Int
i (Word16
forall a. Bounded a => a
minBound::Word16, Word16
forall a. Bounded a => a
maxBound::Word16)
    fromEnum :: Word16 -> Int
fromEnum (W16# Word16#
x#)  = Int# -> Int
I# (Word# -> Int#
word2Int# (Word16# -> Word#
word16ToWord# Word16#
x#))
    
    {-# INLINE enumFrom #-}
    enumFrom :: Word16 -> [Word16]
enumFrom            = Word16 -> [Word16]
forall a. (Enum a, Bounded a) => a -> [a]
boundedEnumFrom
    
    {-# INLINE enumFromThen #-}
    enumFromThen :: Word16 -> Word16 -> [Word16]
enumFromThen        = Word16 -> Word16 -> [Word16]
forall a. (Enum a, Bounded a) => a -> a -> [a]
boundedEnumFromThen
instance Integral Word16 where
    
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}
    quot :: Word16 -> Word16 -> Word16
quot    (W16# Word16#
x#) y :: Word16
y@(W16# Word16#
y#)
        | Word16
y Word16 -> Word16 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word16
0                    = Word16# -> Word16
W16# (Word16#
x# Word16# -> Word16# -> Word16#
`quotWord16#` Word16#
y#)
        | Bool
otherwise                 = Word16
forall a. a
divZeroError
    rem :: Word16 -> Word16 -> Word16
rem     (W16# Word16#
x#) y :: Word16
y@(W16# Word16#
y#)
        | Word16
y Word16 -> Word16 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word16
0                    = Word16# -> Word16
W16# (Word16#
x# Word16# -> Word16# -> Word16#
`remWord16#` Word16#
y#)
        | Bool
otherwise                 = Word16
forall a. a
divZeroError
    quotRem :: Word16 -> Word16 -> (Word16, Word16)
quotRem (W16# Word16#
x#) y :: Word16
y@(W16# Word16#
y#)
        | Word16
y Word16 -> Word16 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word16
0                    = case Word16#
x# Word16# -> Word16# -> (# Word16#, Word16# #)
`quotRemWord16#` Word16#
y# of
                                        (# Word16#
q, Word16#
r #) -> (Word16# -> Word16
W16# Word16#
q, Word16# -> Word16
W16# Word16#
r)
        | Bool
otherwise                 = (Word16, Word16)
forall a. a
divZeroError
    div :: Word16 -> Word16 -> Word16
div    Word16
x Word16
y = Word16 -> Word16 -> Word16
forall a. Integral a => a -> a -> a
quot Word16
x Word16
y
    mod :: Word16 -> Word16 -> Word16
mod    Word16
x Word16
y = Word16 -> Word16 -> Word16
forall a. Integral a => a -> a -> a
rem Word16
x Word16
y
    divMod :: Word16 -> Word16 -> (Word16, Word16)
divMod Word16
x Word16
y = Word16 -> Word16 -> (Word16, Word16)
forall a. Integral a => a -> a -> (a, a)
quotRem Word16
x Word16
y
    toInteger :: Word16 -> Integer
toInteger (W16# Word16#
x#)             = Int# -> Integer
IS (Word# -> Int#
word2Int# (Word16# -> Word#
word16ToWord# Word16#
x#))
instance Bounded Word16 where
    minBound :: Word16
minBound = Word16
0
    maxBound :: Word16
maxBound = Word16
0xFFFF
instance Ix Word16 where
    range :: (Word16, Word16) -> [Word16]
range (Word16
m,Word16
n)         = [Word16
m..Word16
n]
    unsafeIndex :: (Word16, Word16) -> Word16 -> Int
unsafeIndex (Word16
m,Word16
_) Word16
i = Word16 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
i Word16 -> Word16 -> Word16
forall a. Num a => a -> a -> a
- Word16
m)
    inRange :: (Word16, Word16) -> Word16 -> Bool
inRange (Word16
m,Word16
n) Word16
i     = Word16
m Word16 -> Word16 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word16
i Bool -> Bool -> Bool
&& Word16
i Word16 -> Word16 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word16
n
instance Bits Word16 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}
    (W16# Word16#
x#) .&. :: Word16 -> Word16 -> Word16
.&.   (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Word# -> Word#
`and#` (Word16# -> Word#
word16ToWord# Word16#
y#)))
    (W16# Word16#
x#) .|. :: Word16 -> Word16 -> Word16
.|.   (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Word# -> Word#
`or#`  (Word16# -> Word#
word16ToWord# Word16#
y#)))
    (W16# Word16#
x#) xor :: Word16 -> Word16 -> Word16
`xor` (W16# Word16#
y#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Word# -> Word#
`xor#` (Word16# -> Word#
word16ToWord# Word16#
y#)))
    complement :: Word16 -> Word16
complement (W16# Word16#
x#)       = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (Word# -> Word#
not# (Word16# -> Word#
word16ToWord# Word16#
x#)))
    (W16# Word16#
x#) shift :: Word16 -> Int -> Word16
`shift` (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise            = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`shiftRL#` Int# -> Int#
negateInt# Int#
i#))
    (W16# Word16#
x#) shiftL :: Word16 -> Int -> Word16
`shiftL`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise            = Word16
forall a. a
overflowError
    (W16# Word16#
x#) unsafeShiftL :: Word16 -> Int -> Word16
`unsafeShiftL` (I# Int#
i#) =
        Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i#))
    (W16# Word16#
x#) shiftR :: Word16 -> Int -> Word16
`shiftR`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`shiftRL#` Int#
i#))
        | Bool
otherwise            = Word16
forall a. a
overflowError
    (W16# Word16#
x#) unsafeShiftR :: Word16 -> Int -> Word16
`unsafeShiftR` (I# Int#
i#) = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` Int#
i#))
    (W16# Word16#
x#) rotate :: Word16 -> Int -> Word16
`rotate`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i'# Int# -> Int# -> Int#
==# Int#
0#) = Word16# -> Word16
W16# Word16#
x#
        | Bool
otherwise  = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i'#) Word# -> Word# -> Word#
`or#`
                                            ((Word16# -> Word#
word16ToWord# Word16#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` (Int#
16# Int# -> Int# -> Int#
-# Int#
i'#))))
        where
        !i'# :: Int#
i'# = Word# -> Int#
word2Int# (Int# -> Word#
int2Word# Int#
i# Word# -> Word# -> Word#
`and#` Word#
15##)
    bitSizeMaybe :: Word16 -> Maybe Int
bitSizeMaybe Word16
i            = Int -> Maybe Int
forall a. a -> Maybe a
Just (Word16 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word16
i)
    bitSize :: Word16 -> Int
bitSize Word16
i                 = Word16 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word16
i
    isSigned :: Word16 -> Bool
isSigned Word16
_                = Bool
False
    popCount :: Word16 -> Int
popCount (W16# Word16#
x#)        = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
popCnt16# (Word16# -> Word#
word16ToWord# Word16#
x#)))
    bit :: Int -> Word16
bit Int
i                     = Int -> Word16
forall a. (Bits a, Num a) => Int -> a
bitDefault Int
i
    testBit :: Word16 -> Int -> Bool
testBit Word16
a Int
i               = Word16 -> Int -> Bool
forall a. (Bits a, Num a) => a -> Int -> Bool
testBitDefault Word16
a Int
i
instance FiniteBits Word16 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize :: Word16 -> Int
finiteBitSize Word16
_ = Int
16
    countLeadingZeros :: Word16 -> Int
countLeadingZeros  (W16# Word16#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
clz16# (Word16# -> Word#
word16ToWord# Word16#
x#)))
    countTrailingZeros :: Word16 -> Int
countTrailingZeros (W16# Word16#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
ctz16# (Word16# -> Word#
word16ToWord# Word16#
x#)))
byteSwap16 :: Word16 -> Word16
byteSwap16 :: Word16 -> Word16
byteSwap16 (W16# Word16#
w#) = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (Word# -> Word#
byteSwap16# (Word16# -> Word#
word16ToWord# Word16#
w#)))
{-# RULES
"properFraction/Float->(Word16,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word16) n, y :: Float) }
"truncate/Float->Word16"
    truncate = (fromIntegral :: Int -> Word16) . (truncate :: Float -> Int)
"floor/Float->Word16"
    floor    = (fromIntegral :: Int -> Word16) . (floor :: Float -> Int)
"ceiling/Float->Word16"
    ceiling  = (fromIntegral :: Int -> Word16) . (ceiling :: Float -> Int)
"round/Float->Word16"
    round    = (fromIntegral :: Int -> Word16) . (round  :: Float -> Int)
  #-}
{-# RULES
"properFraction/Double->(Word16,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word16) n, y :: Double) }
"truncate/Double->Word16"
    truncate = (fromIntegral :: Int -> Word16) . (truncate :: Double -> Int)
"floor/Double->Word16"
    floor    = (fromIntegral :: Int -> Word16) . (floor :: Double -> Int)
"ceiling/Double->Word16"
    ceiling  = (fromIntegral :: Int -> Word16) . (ceiling :: Double -> Int)
"round/Double->Word16"
    round    = (fromIntegral :: Int -> Word16) . (round  :: Double -> Int)
  #-}
#if WORD_SIZE_IN_BITS > 32
{-# RULES
"properFraction/Float->(Word32,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word32) n, y :: Float) }
"truncate/Float->Word32"
    truncate = (fromIntegral :: Int -> Word32) . (truncate :: Float -> Int)
"floor/Float->Word32"
    floor    = (fromIntegral :: Int -> Word32) . (floor :: Float -> Int)
"ceiling/Float->Word32"
    ceiling  = (fromIntegral :: Int -> Word32) . (ceiling :: Float -> Int)
"round/Float->Word32"
    round    = (fromIntegral :: Int -> Word32) . (round  :: Float -> Int)
  #-}
{-# RULES
"properFraction/Double->(Word32,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word32) n, y :: Double) }
"truncate/Double->Word32"
    truncate = (fromIntegral :: Int -> Word32) . (truncate :: Double -> Int)
"floor/Double->Word32"
    floor    = (fromIntegral :: Int -> Word32) . (floor :: Double -> Int)
"ceiling/Double->Word32"
    ceiling  = (fromIntegral :: Int -> Word32) . (ceiling :: Double -> Int)
"round/Double->Word32"
    round    = (fromIntegral :: Int -> Word32) . (round  :: Double -> Int)
  #-}
#endif
data {-# CTYPE "HsWord32" #-} Word32 = W32# Word32#
instance Eq Word32 where
    == :: Word32 -> Word32 -> Bool
(==) = Word32 -> Word32 -> Bool
eqWord32
    /= :: Word32 -> Word32 -> Bool
(/=) = Word32 -> Word32 -> Bool
neWord32
eqWord32, neWord32 :: Word32 -> Word32 -> Bool
eqWord32 :: Word32 -> Word32 -> Bool
eqWord32 (W32# Word32#
x) (W32# Word32#
y) = Int# -> Bool
isTrue# ((Word32# -> Word#
word32ToWord# Word32#
x) Word# -> Word# -> Int#
`eqWord#` (Word32# -> Word#
word32ToWord# Word32#
y))
neWord32 :: Word32 -> Word32 -> Bool
neWord32 (W32# Word32#
x) (W32# Word32#
y) = Int# -> Bool
isTrue# ((Word32# -> Word#
word32ToWord# Word32#
x) Word# -> Word# -> Int#
`neWord#` (Word32# -> Word#
word32ToWord# Word32#
y))
{-# INLINE [1] eqWord32 #-}
{-# INLINE [1] neWord32 #-}
instance Ord Word32 where
    < :: Word32 -> Word32 -> Bool
(<)  = Word32 -> Word32 -> Bool
ltWord32
    <= :: Word32 -> Word32 -> Bool
(<=) = Word32 -> Word32 -> Bool
leWord32
    >= :: Word32 -> Word32 -> Bool
(>=) = Word32 -> Word32 -> Bool
geWord32
    > :: Word32 -> Word32 -> Bool
(>)  = Word32 -> Word32 -> Bool
gtWord32
{-# INLINE [1] gtWord32 #-}
{-# INLINE [1] geWord32 #-}
{-# INLINE [1] ltWord32 #-}
{-# INLINE [1] leWord32 #-}
gtWord32, geWord32, ltWord32, leWord32 :: Word32 -> Word32 -> Bool
(W32# Word32#
x) gtWord32 :: Word32 -> Word32 -> Bool
`gtWord32` (W32# Word32#
y) = Int# -> Bool
isTrue# (Word32#
x Word32# -> Word32# -> Int#
`gtWord32#` Word32#
y)
(W32# Word32#
x) geWord32 :: Word32 -> Word32 -> Bool
`geWord32` (W32# Word32#
y) = Int# -> Bool
isTrue# (Word32#
x Word32# -> Word32# -> Int#
`geWord32#` Word32#
y)
(W32# Word32#
x) ltWord32 :: Word32 -> Word32 -> Bool
`ltWord32` (W32# Word32#
y) = Int# -> Bool
isTrue# (Word32#
x Word32# -> Word32# -> Int#
`ltWord32#` Word32#
y)
(W32# Word32#
x) leWord32 :: Word32 -> Word32 -> Bool
`leWord32` (W32# Word32#
y) = Int# -> Bool
isTrue# (Word32#
x Word32# -> Word32# -> Int#
`leWord32#` Word32#
y)
instance Num Word32 where
    (W32# Word32#
x#) + :: Word32 -> Word32 -> Word32
+ (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word32#
x# Word32# -> Word32# -> Word32#
`plusWord32#` Word32#
y#)
    (W32# Word32#
x#) - :: Word32 -> Word32 -> Word32
- (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word32#
x# Word32# -> Word32# -> Word32#
`subWord32#` Word32#
y#)
    (W32# Word32#
x#) * :: Word32 -> Word32 -> Word32
* (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word32#
x# Word32# -> Word32# -> Word32#
`timesWord32#` Word32#
y#)
    negate :: Word32 -> Word32
negate (W32# Word32#
x#)       = Word32# -> Word32
W32# (Int32# -> Word32#
int32ToWord32# (Int32# -> Int32#
negateInt32# (Word32# -> Int32#
word32ToInt32# Word32#
x#)))
    abs :: Word32 -> Word32
abs Word32
x                  = Word32
x
    signum :: Word32 -> Word32
signum Word32
0               = Word32
0
    signum Word32
_               = Word32
1
    fromInteger :: Integer -> Word32
fromInteger Integer
i          = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (Integer -> Word#
integerToWord# Integer
i))
instance Enum Word32 where
    succ :: Word32 -> Word32
succ Word32
x
        | Word32
x Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
forall a. Bounded a => a
maxBound = Word32
x Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Word32
1
        | Bool
otherwise     = String -> Word32
forall a. String -> a
succError String
"Word32"
    pred :: Word32 -> Word32
pred Word32
x
        | Word32
x Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
forall a. Bounded a => a
minBound = Word32
x Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
1
        | Bool
otherwise     = String -> Word32
forall a. String -> a
predError String
"Word32"
    toEnum :: Int -> Word32
toEnum i :: Int
i@(I# Int#
i#)
        | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
#if WORD_SIZE_IN_BITS > 32
          Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word32
forall a. Bounded a => a
maxBound::Word32)
#endif
                        = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (Int# -> Word#
int2Word# Int#
i#))
        | Bool
otherwise     = String -> Int -> (Word32, Word32) -> Word32
forall a b. Show a => String -> Int -> (a, a) -> b
toEnumError String
"Word32" Int
i (Word32
forall a. Bounded a => a
minBound::Word32, Word32
forall a. Bounded a => a
maxBound::Word32)
#if WORD_SIZE_IN_BITS == 32
    fromEnum x@(W32# x#)
        | x <= fromIntegral (maxBound::Int)
                        = I# (word2Int# (word32ToWord# x#))
        | otherwise     = fromEnumError "Word32" x
    enumFrom            = integralEnumFrom
    enumFromThen        = integralEnumFromThen
    enumFromTo          = integralEnumFromTo
    enumFromThenTo      = integralEnumFromThenTo
#else
    fromEnum :: Word32 -> Int
fromEnum (W32# Word32#
x#)  = Int# -> Int
I# (Word# -> Int#
word2Int# (Word32# -> Word#
word32ToWord# Word32#
x#))
    
    {-# INLINE enumFrom #-}
    enumFrom :: Word32 -> [Word32]
enumFrom            = Word32 -> [Word32]
forall a. (Enum a, Bounded a) => a -> [a]
boundedEnumFrom
    
    {-# INLINE enumFromThen #-}
    enumFromThen :: Word32 -> Word32 -> [Word32]
enumFromThen        = Word32 -> Word32 -> [Word32]
forall a. (Enum a, Bounded a) => a -> a -> [a]
boundedEnumFromThen
#endif
instance Integral Word32 where
    
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}
    quot :: Word32 -> Word32 -> Word32
quot    (W32# Word32#
x#) y :: Word32
y@(W32# Word32#
y#)
        | Word32
y Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
0                    = Word32# -> Word32
W32# (Word32#
x# Word32# -> Word32# -> Word32#
`quotWord32#` Word32#
y#)
        | Bool
otherwise                 = Word32
forall a. a
divZeroError
    rem :: Word32 -> Word32 -> Word32
rem     (W32# Word32#
x#) y :: Word32
y@(W32# Word32#
y#)
        | Word32
y Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
0                    = Word32# -> Word32
W32# (Word32#
x# Word32# -> Word32# -> Word32#
`remWord32#` Word32#
y#)
        | Bool
otherwise                 = Word32
forall a. a
divZeroError
    quotRem :: Word32 -> Word32 -> (Word32, Word32)
quotRem (W32# Word32#
x#) y :: Word32
y@(W32# Word32#
y#)
        | Word32
y Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
0                    = case Word32#
x# Word32# -> Word32# -> (# Word32#, Word32# #)
`quotRemWord32#` Word32#
y# of
                                        (# Word32#
q, Word32#
r #) -> (Word32# -> Word32
W32# Word32#
q, Word32# -> Word32
W32# Word32#
r)
        | Bool
otherwise                 = (Word32, Word32)
forall a. a
divZeroError
    div :: Word32 -> Word32 -> Word32
div    Word32
x Word32
y = Word32 -> Word32 -> Word32
forall a. Integral a => a -> a -> a
quot Word32
x Word32
y
    mod :: Word32 -> Word32 -> Word32
mod    Word32
x Word32
y = Word32 -> Word32 -> Word32
forall a. Integral a => a -> a -> a
rem Word32
x Word32
y
    divMod :: Word32 -> Word32 -> (Word32, Word32)
divMod Word32
x Word32
y = Word32 -> Word32 -> (Word32, Word32)
forall a. Integral a => a -> a -> (a, a)
quotRem Word32
x Word32
y
    toInteger :: Word32 -> Integer
toInteger (W32# Word32#
x#)             = Word# -> Integer
integerFromWord# (Word32# -> Word#
word32ToWord# Word32#
x#)
instance Bits Word32 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}
    (W32# Word32#
x#) .&. :: Word32 -> Word32 -> Word32
.&.   (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Word# -> Word#
`and#` (Word32# -> Word#
word32ToWord# Word32#
y#)))
    (W32# Word32#
x#) .|. :: Word32 -> Word32 -> Word32
.|.   (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Word# -> Word#
`or#`  (Word32# -> Word#
word32ToWord# Word32#
y#)))
    (W32# Word32#
x#) xor :: Word32 -> Word32 -> Word32
`xor` (W32# Word32#
y#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Word# -> Word#
`xor#` (Word32# -> Word#
word32ToWord# Word32#
y#)))
    complement :: Word32 -> Word32
complement (W32# Word32#
x#)       = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (Word# -> Word#
not# (Word32# -> Word#
word32ToWord# Word32#
x#)))
    (W32# Word32#
x#) shift :: Word32 -> Int -> Word32
`shift` (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise            = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`shiftRL#` Int# -> Int#
negateInt# Int#
i#))
    (W32# Word32#
x#) shiftL :: Word32 -> Int -> Word32
`shiftL`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`shiftL#` Int#
i#))
        | Bool
otherwise            = Word32
forall a. a
overflowError
    (W32# Word32#
x#) unsafeShiftL :: Word32 -> Int -> Word32
`unsafeShiftL` (I# Int#
i#) =
        Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i#))
    (W32# Word32#
x#) shiftR :: Word32 -> Int -> Word32
`shiftR`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`shiftRL#` Int#
i#))
        | Bool
otherwise            = Word32
forall a. a
overflowError
    (W32# Word32#
x#) unsafeShiftR :: Word32 -> Int -> Word32
`unsafeShiftR` (I# Int#
i#) = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` Int#
i#))
    (W32# Word32#
x#) rotate :: Word32 -> Int -> Word32
`rotate`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i'# Int# -> Int# -> Int#
==# Int#
0#) = Word32# -> Word32
W32# Word32#
x#
        | Bool
otherwise   = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`uncheckedShiftL#` Int#
i'#) Word# -> Word# -> Word#
`or#`
                                            ((Word32# -> Word#
word32ToWord# Word32#
x#) Word# -> Int# -> Word#
`uncheckedShiftRL#` (Int#
32# Int# -> Int# -> Int#
-# Int#
i'#))))
        where
        !i'# :: Int#
i'# = Word# -> Int#
word2Int# (Int# -> Word#
int2Word# Int#
i# Word# -> Word# -> Word#
`and#` Word#
31##)
    bitSizeMaybe :: Word32 -> Maybe Int
bitSizeMaybe Word32
i            = Int -> Maybe Int
forall a. a -> Maybe a
Just (Word32 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word32
i)
    bitSize :: Word32 -> Int
bitSize Word32
i                 = Word32 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word32
i
    isSigned :: Word32 -> Bool
isSigned Word32
_                = Bool
False
    popCount :: Word32 -> Int
popCount (W32# Word32#
x#)        = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
popCnt32# (Word32# -> Word#
word32ToWord# Word32#
x#)))
    bit :: Int -> Word32
bit Int
i                     = Int -> Word32
forall a. (Bits a, Num a) => Int -> a
bitDefault Int
i
    testBit :: Word32 -> Int -> Bool
testBit Word32
a Int
i               = Word32 -> Int -> Bool
forall a. (Bits a, Num a) => a -> Int -> Bool
testBitDefault Word32
a Int
i
instance FiniteBits Word32 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize :: Word32 -> Int
finiteBitSize Word32
_ = Int
32
    countLeadingZeros :: Word32 -> Int
countLeadingZeros  (W32# Word32#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
clz32# (Word32# -> Word#
word32ToWord# Word32#
x#)))
    countTrailingZeros :: Word32 -> Int
countTrailingZeros (W32# Word32#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word# -> Word#
ctz32# (Word32# -> Word#
word32ToWord# Word32#
x#)))
instance Show Word32 where
#if WORD_SIZE_IN_BITS < 33
    showsPrec p x = showsPrec p (toInteger x)
#else
    showsPrec :: Int -> Word32 -> ShowS
showsPrec Int
p Word32
x = Int -> Int -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
p (Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word32
x :: Int)
#endif
instance Real Word32 where
    toRational :: Word32 -> Rational
toRational Word32
x = Word32 -> Integer
forall a. Integral a => a -> Integer
toInteger Word32
x Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
1
instance Bounded Word32 where
    minBound :: Word32
minBound = Word32
0
    maxBound :: Word32
maxBound = Word32
0xFFFFFFFF
instance Ix Word32 where
    range :: (Word32, Word32) -> [Word32]
range (Word32
m,Word32
n)         = [Word32
m..Word32
n]
    unsafeIndex :: (Word32, Word32) -> Word32 -> Int
unsafeIndex (Word32
m,Word32
_) Word32
i = Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word32
i Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
m)
    inRange :: (Word32, Word32) -> Word32 -> Bool
inRange (Word32
m,Word32
n) Word32
i     = Word32
m Word32 -> Word32 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word32
i Bool -> Bool -> Bool
&& Word32
i Word32 -> Word32 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word32
n
byteSwap32 :: Word32 -> Word32
byteSwap32 :: Word32 -> Word32
byteSwap32 (W32# Word32#
w#) = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (Word# -> Word#
byteSwap32# (Word32# -> Word#
word32ToWord# Word32#
w#)))
data {-# CTYPE "HsWord64" #-} Word64 = W64# Word64#
instance Eq Word64 where
    == :: Word64 -> Word64 -> Bool
(==) = Word64 -> Word64 -> Bool
eqWord64
    /= :: Word64 -> Word64 -> Bool
(/=) = Word64 -> Word64 -> Bool
neWord64
eqWord64, neWord64 :: Word64 -> Word64 -> Bool
eqWord64 :: Word64 -> Word64 -> Bool
eqWord64 (W64# Word64#
x) (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`eqWord64#` Word64#
y)
neWord64 :: Word64 -> Word64 -> Bool
neWord64 (W64# Word64#
x) (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`neWord64#` Word64#
y)
{-# INLINE [1] eqWord64 #-}
{-# INLINE [1] neWord64 #-}
instance Ord Word64 where
    < :: Word64 -> Word64 -> Bool
(<)  = Word64 -> Word64 -> Bool
ltWord64
    <= :: Word64 -> Word64 -> Bool
(<=) = Word64 -> Word64 -> Bool
leWord64
    >= :: Word64 -> Word64 -> Bool
(>=) = Word64 -> Word64 -> Bool
geWord64
    > :: Word64 -> Word64 -> Bool
(>)  = Word64 -> Word64 -> Bool
gtWord64
{-# INLINE [1] gtWord64 #-}
{-# INLINE [1] geWord64 #-}
{-# INLINE [1] ltWord64 #-}
{-# INLINE [1] leWord64 #-}
gtWord64, geWord64, ltWord64, leWord64 :: Word64 -> Word64 -> Bool
(W64# Word64#
x) gtWord64 :: Word64 -> Word64 -> Bool
`gtWord64` (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`gtWord64#` Word64#
y)
(W64# Word64#
x) geWord64 :: Word64 -> Word64 -> Bool
`geWord64` (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`geWord64#` Word64#
y)
(W64# Word64#
x) ltWord64 :: Word64 -> Word64 -> Bool
`ltWord64` (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`ltWord64#` Word64#
y)
(W64# Word64#
x) leWord64 :: Word64 -> Word64 -> Bool
`leWord64` (W64# Word64#
y) = Int# -> Bool
isTrue# (Word64#
x Word64# -> Word64# -> Int#
`leWord64#` Word64#
y)
instance Num Word64 where
    (W64# Word64#
x#) + :: Word64 -> Word64 -> Word64
+ (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`plusWord64#` Word64#
y#)
    (W64# Word64#
x#) - :: Word64 -> Word64 -> Word64
- (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`subWord64#` Word64#
y#)
    (W64# Word64#
x#) * :: Word64 -> Word64 -> Word64
* (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`timesWord64#` Word64#
y#)
    negate :: Word64 -> Word64
negate (W64# Word64#
x#)       = Word64# -> Word64
W64# (Int64# -> Word64#
int64ToWord64# (Int64# -> Int64#
negateInt64# (Word64# -> Int64#
word64ToInt64# Word64#
x#)))
    abs :: Word64 -> Word64
abs Word64
x                  = Word64
x
    signum :: Word64 -> Word64
signum Word64
0               = Word64
0
    signum Word64
_               = Word64
1
    fromInteger :: Integer -> Word64
fromInteger Integer
i          = Word64# -> Word64
W64# (Integer -> Word64#
integerToWord64# Integer
i)
instance Enum Word64 where
    succ :: Word64 -> Word64
succ Word64
x
        | Word64
x Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
forall a. Bounded a => a
maxBound = Word64
x Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
1
        | Bool
otherwise     = String -> Word64
forall a. String -> a
succError String
"Word64"
    pred :: Word64 -> Word64
pred Word64
x
        | Word64
x Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
forall a. Bounded a => a
minBound = Word64
x Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1
        | Bool
otherwise     = String -> Word64
forall a. String -> a
predError String
"Word64"
    toEnum :: Int -> Word64
toEnum i :: Int
i@(I# Int#
i#)
        | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0        = Word64# -> Word64
W64# (Word# -> Word64#
wordToWord64# (Int# -> Word#
int2Word# Int#
i#))
        | Bool
otherwise     = String -> Int -> (Word64, Word64) -> Word64
forall a b. Show a => String -> Int -> (a, a) -> b
toEnumError String
"Word64" Int
i (Word64
forall a. Bounded a => a
minBound::Word64, Word64
forall a. Bounded a => a
maxBound::Word64)
    fromEnum :: Word64 -> Int
fromEnum x :: Word64
x@(W64# Word64#
x#)
        | Word64
x Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
<= Int -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
forall a. Bounded a => a
maxBound::Int)
                        = Int# -> Int
I# (Word# -> Int#
word2Int# (Word64# -> Word#
word64ToWord# Word64#
x#))
        | Bool
otherwise     = String -> Word64 -> Int
forall a b. Show a => String -> a -> b
fromEnumError String
"Word64" Word64
x
#if WORD_SIZE_IN_BITS < 64
    
    {-# INLINE enumFrom #-}
    enumFrom            = integralEnumFrom
    
    {-# INLINE enumFromThen #-}
    enumFromThen        = integralEnumFromThen
    
    {-# INLINE enumFromTo #-}
    enumFromTo          = integralEnumFromTo
    
    {-# INLINE enumFromThenTo #-}
    enumFromThenTo      = integralEnumFromThenTo
#else
    
    
    
    
    
    {-# INLINE enumFrom #-}
    enumFrom :: Word64 -> [Word64]
enumFrom Word64
x          = (Word -> Word64) -> [Word] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map Word -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word -> [Word]
forall a. Enum a => a -> [a]
enumFrom (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
x :: Word))
    
    {-# INLINE enumFromThen #-}
    enumFromThen :: Word64 -> Word64 -> [Word64]
enumFromThen Word64
x Word64
y    = (Word -> Word64) -> [Word] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map Word -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word -> Word -> [Word]
forall a. Enum a => a -> a -> [a]
enumFromThen (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
x :: Word) (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
y))
    
    {-# INLINE enumFromTo #-}
    enumFromTo :: Word64 -> Word64 -> [Word64]
enumFromTo Word64
x Word64
y      = (Word -> Word64) -> [Word] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map Word -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word -> Word -> [Word]
forall a. Enum a => a -> a -> [a]
enumFromTo (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
x :: Word) (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
y))
    
    {-# INLINE enumFromThenTo #-}
    enumFromThenTo :: Word64 -> Word64 -> Word64 -> [Word64]
enumFromThenTo Word64
x Word64
y Word64
z = (Word -> Word64) -> [Word] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map Word -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word -> Word -> Word -> [Word]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
x :: Word) (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
y) (Word64 -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
z))
#endif
instance Integral Word64 where
    
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}
    quot :: Word64 -> Word64 -> Word64
quot    (W64# Word64#
x#) y :: Word64
y@(W64# Word64#
y#)
        | Word64
y Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
0                    = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`quotWord64#` Word64#
y#)
        | Bool
otherwise                 = Word64
forall a. a
divZeroError
    rem :: Word64 -> Word64 -> Word64
rem     (W64# Word64#
x#) y :: Word64
y@(W64# Word64#
y#)
        | Word64
y Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
0                    = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`remWord64#` Word64#
y#)
        | Bool
otherwise                 = Word64
forall a. a
divZeroError
    quotRem :: Word64 -> Word64 -> (Word64, Word64)
quotRem (W64# Word64#
x#) y :: Word64
y@(W64# Word64#
y#)
#if WORD_SIZE_IN_BITS < 64
        | y /= 0                    = (W64# (x# `quotWord64#` y#), W64# (x# `remWord64#` y#))
#else
        
        | Word64
y Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
0                    = case Word# -> Word# -> (# Word#, Word# #)
quotRemWord# (Word64# -> Word#
word64ToWord# Word64#
x#) (Word64# -> Word#
word64ToWord# Word64#
y#) of
                                        (# Word#
q, Word#
r #) -> (Word64# -> Word64
W64# (Word# -> Word64#
wordToWord64# Word#
q),  Word64# -> Word64
W64# (Word# -> Word64#
wordToWord64# Word#
r))
#endif
        | Bool
otherwise                 = (Word64, Word64)
forall a. a
divZeroError
    div :: Word64 -> Word64 -> Word64
div    Word64
x Word64
y = Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
quot Word64
x Word64
y
    mod :: Word64 -> Word64 -> Word64
mod    Word64
x Word64
y = Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
rem Word64
x Word64
y
    divMod :: Word64 -> Word64 -> (Word64, Word64)
divMod Word64
x Word64
y = Word64 -> Word64 -> (Word64, Word64)
forall a. Integral a => a -> a -> (a, a)
quotRem Word64
x Word64
y
    toInteger :: Word64 -> Integer
toInteger (W64# Word64#
x#)             = Word64# -> Integer
integerFromWord64# Word64#
x#
instance Bits Word64 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}
    (W64# Word64#
x#) .&. :: Word64 -> Word64 -> Word64
.&.   (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`and64#` Word64#
y#)
    (W64# Word64#
x#) .|. :: Word64 -> Word64 -> Word64
.|.   (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`or64#`  Word64#
y#)
    (W64# Word64#
x#) xor :: Word64 -> Word64 -> Word64
`xor` (W64# Word64#
y#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Word64# -> Word64#
`xor64#` Word64#
y#)
    complement :: Word64 -> Word64
complement (W64# Word64#
x#)       = Word64# -> Word64
W64# (Word64# -> Word64#
not64# Word64#
x#)
    (W64# Word64#
x#) shift :: Word64 -> Int -> Word64
`shift` (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`shiftLWord64#` Int#
i#)
        | Bool
otherwise            = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`shiftRLWord64#` Int# -> Int#
negateInt# Int#
i#)
    (W64# Word64#
x#) shiftL :: Word64 -> Int -> Word64
`shiftL`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`shiftLWord64#` Int#
i#)
        | Bool
otherwise            = Word64
forall a. a
overflowError
    (W64# Word64#
x#) unsafeShiftL :: Word64 -> Int -> Word64
`unsafeShiftL` (I# Int#
i#) = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`uncheckedShiftL64#` Int#
i#)
    (W64# Word64#
x#) shiftR :: Word64 -> Int -> Word64
`shiftR`       (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
>=# Int#
0#)  = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`shiftRLWord64#` Int#
i#)
        | Bool
otherwise            = Word64
forall a. a
overflowError
    (W64# Word64#
x#) unsafeShiftR :: Word64 -> Int -> Word64
`unsafeShiftR` (I# Int#
i#) = Word64# -> Word64
W64# (Word64#
x# Word64# -> Int# -> Word64#
`uncheckedShiftRL64#` Int#
i#)
    (W64# Word64#
x#) rotate :: Word64 -> Int -> Word64
`rotate` (I# Int#
i#)
        | Int# -> Bool
isTrue# (Int#
i'# Int# -> Int# -> Int#
==# Int#
0#) = Word64# -> Word64
W64# Word64#
x#
        | Bool
otherwise            = Word64# -> Word64
W64# ((Word64#
x# Word64# -> Int# -> Word64#
`uncheckedShiftL64#` Int#
i'#) Word64# -> Word64# -> Word64#
`or64#`
                                       (Word64#
x# Word64# -> Int# -> Word64#
`uncheckedShiftRL64#` (Int#
64# Int# -> Int# -> Int#
-# Int#
i'#)))
        where
        !i'# :: Int#
i'# = Word# -> Int#
word2Int# (Int# -> Word#
int2Word# Int#
i# Word# -> Word# -> Word#
`and#` Word#
63##)
    bitSizeMaybe :: Word64 -> Maybe Int
bitSizeMaybe Word64
i            = Int -> Maybe Int
forall a. a -> Maybe a
Just (Word64 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word64
i)
    bitSize :: Word64 -> Int
bitSize Word64
i                 = Word64 -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize Word64
i
    isSigned :: Word64 -> Bool
isSigned Word64
_                = Bool
False
    popCount :: Word64 -> Int
popCount (W64# Word64#
x#)        = Int# -> Int
I# (Word# -> Int#
word2Int# (Word64# -> Word#
popCnt64# Word64#
x#))
    bit :: Int -> Word64
bit Int
i                     = Int -> Word64
forall a. (Bits a, Num a) => Int -> a
bitDefault Int
i
    testBit :: Word64 -> Int -> Bool
testBit Word64
a Int
i               = Word64 -> Int -> Bool
forall a. (Bits a, Num a) => a -> Int -> Bool
testBitDefault Word64
a Int
i
instance FiniteBits Word64 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize :: Word64 -> Int
finiteBitSize Word64
_ = Int
64
    countLeadingZeros :: Word64 -> Int
countLeadingZeros  (W64# Word64#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word64# -> Word#
clz64# Word64#
x#))
    countTrailingZeros :: Word64 -> Int
countTrailingZeros (W64# Word64#
x#) = Int# -> Int
I# (Word# -> Int#
word2Int# (Word64# -> Word#
ctz64# Word64#
x#))
instance Show Word64 where
    showsPrec :: Int -> Word64 -> ShowS
showsPrec Int
p Word64
x = Int -> Integer -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
p (Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger Word64
x)
instance Real Word64 where
    toRational :: Word64 -> Rational
toRational Word64
x = Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger Word64
x Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
1
instance Bounded Word64 where
    minBound :: Word64
minBound = Word64
0
    maxBound :: Word64
maxBound = Word64
0xFFFFFFFFFFFFFFFF
instance Ix Word64 where
    range :: (Word64, Word64) -> [Word64]
range (Word64
m,Word64
n)         = [Word64
m..Word64
n]
    unsafeIndex :: (Word64, Word64) -> Word64 -> Int
unsafeIndex (Word64
m,Word64
_) Word64
i = Word64 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word64
i Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
m)
    inRange :: (Word64, Word64) -> Word64 -> Bool
inRange (Word64
m,Word64
n) Word64
i     = Word64
m Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word64
i Bool -> Bool -> Bool
&& Word64
i Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word64
n
byteSwap64 :: Word64 -> Word64
byteSwap64 :: Word64 -> Word64
byteSwap64 (W64# Word64#
w#) = Word64# -> Word64
W64# (Word64# -> Word64#
byteSwap64# Word64#
w#)
bitReverse8 :: Word8 -> Word8
bitReverse8 :: Word8 -> Word8
bitReverse8 (W8# Word8#
w#) = Word8# -> Word8
W8# (Word# -> Word8#
wordToWord8# (Word# -> Word#
bitReverse8# (Word8# -> Word#
word8ToWord# Word8#
w#)))
bitReverse16 :: Word16 -> Word16
bitReverse16 :: Word16 -> Word16
bitReverse16 (W16# Word16#
w#) = Word16# -> Word16
W16# (Word# -> Word16#
wordToWord16# (Word# -> Word#
bitReverse16# (Word16# -> Word#
word16ToWord# Word16#
w#)))
bitReverse32 :: Word32 -> Word32
bitReverse32 :: Word32 -> Word32
bitReverse32 (W32# Word32#
w#) = Word32# -> Word32
W32# (Word# -> Word32#
wordToWord32# (Word# -> Word#
bitReverse32# (Word32# -> Word#
word32ToWord# Word32#
w#)))
bitReverse64 :: Word64 -> Word64
bitReverse64 :: Word64 -> Word64
bitReverse64 (W64# Word64#
w#) = Word64# -> Word64
W64# (Word64# -> Word64#
bitReverse64# Word64#
w#)
shiftRLWord64# :: Word64# -> Int# -> Word64#
Word64#
a shiftRLWord64# :: Word64# -> Int# -> Word64#
`shiftRLWord64#` Int#
b = Word64# -> Int# -> Word64#
uncheckedShiftRL64# Word64#
a Int#
b
                    Word64# -> Word64# -> Word64#
`and64#` Int64# -> Word64#
int64ToWord64# (Int# -> Int64#
intToInt64# (Int# -> Int# -> Int#
shift_mask Int#
64# Int#
b))
shiftLWord64# :: Word64# -> Int# -> Word64#
Word64#
a shiftLWord64# :: Word64# -> Int# -> Word64#
`shiftLWord64#` Int#
b  = Word64# -> Int# -> Word64#
uncheckedShiftL64# Word64#
a Int#
b
                    Word64# -> Word64# -> Word64#
`and64#` Int64# -> Word64#
int64ToWord64# (Int# -> Int64#
intToInt64# (Int# -> Int# -> Int#
shift_mask Int#
64# Int#
b))