{-# LANGUAGE MagicHash #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
module Basement.BoxedArray
    ( Array
    , MArray
    , empty
    , length
    , mutableLength
    , copy
    , unsafeCopyAtRO
    , thaw
    , new
    , create
    , unsafeFreeze
    , unsafeThaw
    , freeze
    , unsafeWrite
    , unsafeRead
    , unsafeIndex
    , write
    , read
    , index
    , singleton
    , replicate
    , null
    , take
    , drop
    , splitAt
    , revTake
    , revDrop
    , revSplitAt
    , splitOn
    , sub
    , intersperse
    , span
    , spanEnd
    , break
    , breakEnd
    , mapFromUnboxed
    , mapToUnboxed
    , cons
    , snoc
    , uncons
    , unsnoc
    
    , sortBy
    , filter
    , reverse
    , elem
    , find
    , foldl'
    , foldr
    , foldl1'
    , foldr1
    , all
    , any
    , isPrefixOf
    , isSuffixOf
    , builderAppend
    , builderBuild
    , builderBuild_
    ) where
import           GHC.Prim
import           GHC.Types
import           GHC.ST
import           Data.Proxy
import           Basement.Numerical.Additive
import           Basement.Numerical.Subtractive
import           Basement.NonEmpty
import           Basement.Compat.Base
import qualified Basement.Alg.Class as Alg
import qualified Basement.Alg.Mutable as Alg
import           Basement.Compat.MonadTrans
import           Basement.Compat.Semigroup
import           Basement.Types.OffsetSize
import           Basement.PrimType
import           Basement.NormalForm
import           Basement.Monad
import           Basement.UArray.Base (UArray)
import qualified Basement.UArray.Base as UArray
import           Basement.Exception
import           Basement.MutableBuilder
import qualified Basement.Compat.ExtList as List
data Array a = Array {-# UNPACK #-} !(Offset a)
                     {-# UNPACK #-} !(CountOf a)
                                    (Array# a)
    deriving (Typeable)
instance Data ty => Data (Array ty) where
    dataTypeOf _ = arrayType
    toConstr _   = error "toConstr"
    gunfold _ _  = error "gunfold"
arrayType :: DataType
arrayType = mkNoRepType "Foundation.Array"
instance NormalForm a => NormalForm (Array a) where
    toNormalForm arr = loop 0
      where
        !sz = length arr
        loop !i
            | i .==# sz = ()
            | otherwise = unsafeIndex arr i `seq` loop (i+1)
data MArray a st = MArray {-# UNPACK #-} !(Offset a)
                          {-# UNPACK #-} !(CountOf a)
                                         (MutableArray# st a)
    deriving (Typeable)
instance Functor Array where
    fmap = map
instance Semigroup (Array a) where
    (<>) = append
instance Monoid (Array a) where
    mempty  = empty
    mappend = append
    mconcat = concat
instance Show a => Show (Array a) where
    show v = show (toList v)
instance Eq a => Eq (Array a) where
    (==) = equal
instance Ord a => Ord (Array a) where
    compare = vCompare
instance IsList (Array ty) where
    type Item (Array ty) = ty
    fromList = vFromList
    fromListN len = vFromListN (CountOf len)
    toList = vToList
mutableLength :: MArray ty st -> Int
mutableLength (MArray _ (CountOf len) _) = len
{-# INLINE mutableLength #-}
mutableLengthSize :: MArray ty st -> CountOf ty
mutableLengthSize (MArray _ size _) = size
{-# INLINE mutableLengthSize #-}
index :: Array ty -> Offset ty -> ty
index array n
    | isOutOfBound n len = outOfBound OOB_Index n len
    | otherwise          = unsafeIndex array n
  where len = length array
{-# INLINE index #-}
unsafeIndex :: Array ty -> Offset ty -> ty
unsafeIndex (Array start _ a) ofs = primArrayIndex a (start+ofs)
{-# INLINE unsafeIndex #-}
read :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim ty
read array n
    | isOutOfBound n len = primOutOfBound OOB_Read n len
    | otherwise          = unsafeRead array n
  where len = mutableLengthSize array
{-# INLINE read #-}
unsafeRead :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim ty
unsafeRead (MArray start _ ma) i = primMutableArrayRead ma (start + i)
{-# INLINE unsafeRead #-}
write :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> ty -> prim ()
write array n val
    | isOutOfBound n len = primOutOfBound OOB_Write n len
    | otherwise          = unsafeWrite array n val
  where len = mutableLengthSize array
{-# INLINE write #-}
unsafeWrite :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> ty -> prim ()
unsafeWrite (MArray start _ ma) ofs v =
    primMutableArrayWrite ma (start + ofs) v
{-# INLINE unsafeWrite #-}
unsafeFreeze :: PrimMonad prim => MArray ty (PrimState prim) -> prim (Array ty)
unsafeFreeze (MArray ofs sz ma) = primitive $ \s1 ->
    case unsafeFreezeArray# ma s1 of
        (# s2, a #) -> (# s2, Array ofs sz a #)
{-# INLINE unsafeFreeze #-}
unsafeThaw :: PrimMonad prim => Array ty -> prim (MArray ty (PrimState prim))
unsafeThaw (Array ofs sz a) = primitive $ \st -> (# st, MArray ofs sz (unsafeCoerce# a) #)
{-# INLINE unsafeThaw #-}
thaw :: PrimMonad prim => Array ty -> prim (MArray ty (PrimState prim))
thaw array = do
    m <- new (length array)
    unsafeCopyAtRO m (Offset 0) array (Offset 0) (length array)
    pure m
{-# INLINE thaw #-}
freeze :: PrimMonad prim => MArray ty (PrimState prim) -> prim (Array ty)
freeze marray = do
    m <- new sz
    copyAt m (Offset 0) marray (Offset 0) sz
    unsafeFreeze m
  where
    sz = mutableLengthSize marray
copy :: Array ty -> Array ty
copy a = runST (unsafeThaw a >>= freeze)
copyAt :: PrimMonad prim
       => MArray ty (PrimState prim) 
       -> Offset ty                  
       -> MArray ty (PrimState prim) 
       -> Offset ty                  
       -> CountOf ty                 
       -> prim ()
copyAt dst od src os n = loop od os
  where 
        loop d s
            | s .==# n  = pure ()
            | otherwise = unsafeRead src s >>= unsafeWrite dst d >> loop (d+1) (s+1)
unsafeCopyAtRO :: PrimMonad prim
               => MArray ty (PrimState prim) 
               -> Offset ty                  
               -> Array ty                   
               -> Offset ty                  
               -> CountOf ty                    
               -> prim ()
unsafeCopyAtRO (MArray (Offset (I# dstart)) _ da) (Offset (I# dofs))
               (Array  (Offset (I# sstart)) _ sa) (Offset (I# sofs))
               (CountOf (I# n)) =
    primitive $ \st ->
        (# copyArray# sa (sstart +# sofs) da (dstart +# dofs) n st, () #)
unsafeCopyFrom :: Array ty 
               -> CountOf ty  
               -> (Array ty -> Offset ty -> MArray ty s -> ST s ())
               
               -> ST s (Array ty) 
unsafeCopyFrom v' newLen f = new newLen >>= fill (Offset 0) f >>= unsafeFreeze
  where len = length v'
        endIdx = Offset 0 `offsetPlusE` len
        fill i f' r'
            | i == endIdx = pure r'
            | otherwise   = do f' v' i r'
                               fill (i + Offset 1) f' r'
new :: PrimMonad prim => CountOf ty -> prim (MArray ty (PrimState prim))
new sz@(CountOf (I# n)) = primitive $ \s1 ->
    case newArray# n (error "vector: internal error uninitialized vector") s1 of
        (# s2, ma #) -> (# s2, MArray (Offset 0) sz ma #)
create :: forall ty . CountOf ty 
       -> (Offset ty -> ty)   
       -> Array ty            
create n initializer = runST (new n >>= iter initializer)
  where
    iter :: PrimMonad prim => (Offset ty -> ty) -> MArray ty (PrimState prim) -> prim (Array ty)
    iter f ma = loop 0
      where
        loop s
            | s .==# n  = unsafeFreeze ma
            | otherwise = unsafeWrite ma s (f s) >> loop (s+1)
        {-# INLINE loop #-}
    {-# INLINE iter #-}
equal :: Eq a => Array a -> Array a -> Bool
equal a b = (len == length b) && eachEqual 0
  where
    len = length a
    eachEqual !i
        | i .==# len                         = True
        | unsafeIndex a i /= unsafeIndex b i = False
        | otherwise                          = eachEqual (i+1)
vCompare :: Ord a => Array a -> Array a -> Ordering
vCompare a b = loop 0
  where
    !la = length a
    !lb = length b
    loop n
        | n .==# la = if la == lb then EQ else LT
        | n .==# lb = GT
        | otherwise =
            case unsafeIndex a n `compare` unsafeIndex b n of
                EQ -> loop (n+1)
                r  -> r
empty :: Array a
empty = runST $ onNewArray 0 (\_ s -> s)
length :: Array a -> CountOf a
length (Array _ sz _) = sz
vFromList :: [a] -> Array a
vFromList l = runST (new len >>= loop 0 l)
  where
    len = List.length l
    loop _ []     ma = unsafeFreeze ma
    loop i (x:xs) ma = unsafeWrite ma i x >> loop (i+1) xs ma
vFromListN :: forall a . CountOf a -> [a] -> Array a
vFromListN len l = runST $ do
    ma <- new len
    sz <- loop 0 l ma
    unsafeFreezeShrink ma sz
  where
    
    loop :: Offset a -> [a] -> MArray a s -> ST s (CountOf a)
    loop i []     _  = return (offsetAsSize i)
    loop i (x:xs) ma
        | i .==# len = return (offsetAsSize i)
        | otherwise  = unsafeWrite ma i x >> loop (i+1) xs ma
vToList :: Array a -> [a]
vToList v
    | len == 0  = []
    | otherwise = fmap (unsafeIndex v) [0..sizeLastOffset len]
  where !len = length v
append :: Array ty -> Array ty -> Array ty
append a b = runST $ do
    r  <- new (la+lb)
    unsafeCopyAtRO r (Offset 0) a (Offset 0) la
    unsafeCopyAtRO r (sizeAsOffset la) b (Offset 0) lb
    unsafeFreeze r
  where la = length a
        lb = length b
concat :: [Array ty] -> Array ty
concat l = runST $ do
    r <- new (mconcat $ fmap length l)
    loop r (Offset 0) l
    unsafeFreeze r
  where loop _ _ []     = pure ()
        loop r i (x:xs) = do
            unsafeCopyAtRO r i x (Offset 0) lx
            loop r (i `offsetPlusE` lx) xs
          where lx = length x
onNewArray :: PrimMonad m
           => Int
           -> (MutableArray# (PrimState m) a -> State# (PrimState m) -> State# (PrimState m))
           -> m (Array a)
onNewArray len@(I# len#) f = primitive $ \st -> do
    case newArray# len# (error "onArray") st of { (# st2, mv #) ->
    case f mv st2                            of { st3           ->
    case unsafeFreezeArray# mv st3           of { (# st4, a #)  ->
        (# st4, Array (Offset 0) (CountOf len) a #) }}}
null :: Array ty -> Bool
null = (==) 0 . length
take :: CountOf ty -> Array ty -> Array ty
take nbElems a@(Array start len arr)
    | nbElems <= 0 = empty
    | n == len     = a
    | otherwise    = Array start n arr
  where
    n = min nbElems len
drop :: CountOf ty -> Array ty -> Array ty
drop nbElems a@(Array start len arr)
    | nbElems <= 0                               = a
    | Just nbTails <- len - nbElems, nbTails > 0 = Array (start `offsetPlusE` nbElems) nbTails arr
    | otherwise                                  = empty
splitAt :: CountOf ty -> Array ty -> (Array ty, Array ty)
splitAt nbElems a@(Array start len arr)
    | nbElems <= 0 = (empty, a)
    | Just nbTails <- len - nbElems, nbTails > 0 = ( Array start                         nbElems arr
                                                   , Array (start `offsetPlusE` nbElems) nbTails arr)
    | otherwise = (a, empty)
countFromStart :: Array ty -> CountOf ty -> CountOf ty
countFromStart v sz@(CountOf sz')
    | sz >= len = CountOf 0
    | otherwise = CountOf (len' - sz')
  where len@(CountOf len') = length v
revTake :: CountOf ty -> Array ty -> Array ty
revTake n v = drop (countFromStart v n) v
revDrop :: CountOf ty -> Array ty -> Array ty
revDrop n v = take (countFromStart v n) v
revSplitAt :: CountOf ty -> Array ty -> (Array ty, Array ty)
revSplitAt n v = (drop idx v, take idx v) where idx = countFromStart v n
splitOn ::  (ty -> Bool) -> Array ty -> [Array ty]
splitOn predicate vec
    | len == CountOf 0 = [mempty]
    | otherwise     = loop (Offset 0) (Offset 0)
  where
    !len = length vec
    !endIdx = Offset 0 `offsetPlusE` len
    loop prevIdx idx
        | idx == endIdx = [sub vec prevIdx idx]
        | otherwise     =
            let e = unsafeIndex vec idx
                idx' = idx + 1
             in if predicate e
                    then sub vec prevIdx idx : loop idx' idx'
                    else loop prevIdx idx'
sub :: Array ty -> Offset ty -> Offset ty -> Array ty
sub (Array start len a) startIdx expectedEndIdx
    | startIdx == endIdx           = empty
    | otherwise                    = Array (start + startIdx) newLen a
  where
    newLen = endIdx - startIdx
    endIdx = min expectedEndIdx (sizeAsOffset len)
break ::  (ty -> Bool) -> Array ty -> (Array ty, Array ty)
break predicate v = findBreak 0
  where
    !len = length v
    findBreak i
        | i .==# len  = (v, empty)
        | otherwise   =
            if predicate (unsafeIndex v i)
                then splitAt (offsetAsSize i) v
                else findBreak (i+1)
breakEnd ::  (ty -> Bool) -> Array ty -> (Array ty, Array ty)
breakEnd predicate v = findBreak (sizeAsOffset len)
  where
    !len = length v
    findBreak !i
        | i == 0      = (v, empty)
        | predicate e = splitAt (offsetAsSize i) v
        | otherwise   = findBreak i'
      where
        e = unsafeIndex v i'
        i' = i `offsetSub` 1
intersperse :: ty -> Array ty -> Array ty
intersperse sep v = case len - 1 of
    Nothing -> v
    Just 0 -> v
    Just more -> runST $ unsafeCopyFrom v (len + more) (go (Offset 0 `offsetPlusE` more) sep)
  where len = length v
        
        go :: Offset ty -> ty -> Array ty -> Offset ty -> MArray ty s -> ST s ()
        go endI sep' oldV oldI newV
            | oldI == endI = unsafeWrite newV dst e
            | otherwise    = do
                unsafeWrite newV dst e
                unsafeWrite newV (dst + 1) sep'
          where
            e = unsafeIndex oldV oldI
            dst = oldI + oldI
span ::  (ty -> Bool) -> Array ty -> (Array ty, Array ty)
span p = break (not . p)
spanEnd ::  (ty -> Bool) -> Array ty -> (Array ty, Array ty)
spanEnd p = breakEnd (not . p)
map :: (a -> b) -> Array a -> Array b
map f a = create (sizeCast Proxy $ length a) (\i -> f $ unsafeIndex a (offsetCast Proxy i))
mapFromUnboxed :: PrimType a => (a -> b) -> UArray a -> Array b
mapFromUnboxed f arr = vFromListN (sizeCast Proxy $ UArray.length arr) . fmap f . toList $ arr
mapToUnboxed :: PrimType b => (a -> b) -> Array a -> UArray b
mapToUnboxed f arr = UArray.vFromListN (sizeCast Proxy $ length arr) . fmap f . toList $ arr
singleton :: ty -> Array ty
singleton e = runST $ do
    a <- new 1
    unsafeWrite a 0 e
    unsafeFreeze a
replicate :: CountOf ty -> ty -> Array ty
replicate sz ty = create sz (const ty)
cons :: ty -> Array ty -> Array ty
cons e vec
    | len == CountOf 0 = singleton e
    | otherwise     = runST $ do
        mv <- new (len + CountOf 1)
        unsafeWrite mv 0 e
        unsafeCopyAtRO mv (Offset 1) vec (Offset 0) len
        unsafeFreeze mv
  where
    !len = length vec
snoc ::  Array ty -> ty -> Array ty
snoc vec e
    | len == 0  = singleton e
    | otherwise = runST $ do
        mv <- new (len + 1)
        unsafeCopyAtRO mv 0 vec 0 len
        unsafeWrite mv (sizeAsOffset len) e
        unsafeFreeze mv
  where
    !len = length vec
uncons :: Array ty -> Maybe (ty, Array ty)
uncons vec
    | len == 0  = Nothing
    | otherwise = Just (unsafeIndex vec 0, drop 1 vec)
  where
    !len = length vec
unsnoc :: Array ty -> Maybe (Array ty, ty)
unsnoc vec = case len - 1 of
    Nothing -> Nothing
    Just newLen -> Just (take newLen vec, unsafeIndex vec (sizeLastOffset len))
  where
    !len = length vec
elem :: Eq ty => ty -> Array ty -> Bool
elem !ty arr = loop 0
  where
    !sz = length arr
    loop !i | i .==# sz = False
            | t == ty   = True
            | otherwise = loop (i+1)
      where t = unsafeIndex arr i
find :: (ty -> Bool) -> Array ty -> Maybe ty
find predicate vec = loop 0
  where
    !len = length vec
    loop i
        | i .==# len = Nothing
        | otherwise  =
            let e = unsafeIndex vec i
             in if predicate e then Just e else loop (i+1)
instance (PrimMonad prim, st ~ PrimState prim)
         => Alg.RandomAccess (MArray ty st) prim ty where
    read (MArray _ _ mba) = primMutableArrayRead mba
    write (MArray _ _ mba) = primMutableArrayWrite mba
sortBy :: forall ty . (ty -> ty -> Ordering) -> Array ty -> Array ty
sortBy xford vec
    | len == 0  = empty
    | otherwise = runST (thaw vec >>= doSort xford)
  where
    len = length vec
    doSort :: PrimMonad prim => (ty -> ty -> Ordering) -> MArray ty (PrimState prim) -> prim (Array ty)
    doSort ford ma = Alg.inplaceSortBy ford 0 len ma >> unsafeFreeze ma
filter :: forall ty . (ty -> Bool) -> Array ty -> Array ty
filter predicate vec = runST (new len >>= copyFilterFreeze predicate (unsafeIndex vec))
  where
    !len = length vec
    copyFilterFreeze :: PrimMonad prim => (ty -> Bool) -> (Offset ty -> ty) -> MArray ty (PrimState prim) -> prim (Array ty)
    copyFilterFreeze predi getVec mvec = loop (Offset 0) (Offset 0) >>= freezeUntilIndex mvec
      where
        loop d s
            | s .==# len  = pure d
            | predi v     = unsafeWrite mvec d v >> loop (d+1) (s+1)
            | otherwise   = loop d (s+1)
          where
            v = getVec s
freezeUntilIndex :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim (Array ty)
freezeUntilIndex mvec d = do
    m <- new (offsetAsSize d)
    copyAt m (Offset 0) mvec (Offset 0) (offsetAsSize d)
    unsafeFreeze m
unsafeFreezeShrink :: PrimMonad prim => MArray ty (PrimState prim) -> CountOf ty -> prim (Array ty)
unsafeFreezeShrink (MArray start _ ma) n = unsafeFreeze (MArray start n ma)
reverse :: Array ty -> Array ty
reverse a = create len toEnd
  where
    len@(CountOf s) = length a
    toEnd (Offset i) = unsafeIndex a (Offset (s - 1 - i))
foldr :: (ty -> a -> a) -> a -> Array ty -> a
foldr f initialAcc vec = loop 0
  where
    len = length vec
    loop !i
        | i .==# len = initialAcc
        | otherwise  = unsafeIndex vec i `f` loop (i+1)
foldl' :: (a -> ty -> a) -> a -> Array ty -> a
foldl' f initialAcc vec = loop 0 initialAcc
  where
    len = length vec
    loop !i !acc
        | i .==# len = acc
        | otherwise  = loop (i+1) (f acc (unsafeIndex vec i))
foldl1' :: (ty -> ty -> ty) -> NonEmpty (Array ty) -> ty
foldl1' f arr = let (initialAcc, rest) = splitAt 1 $ getNonEmpty arr
               in foldl' f (unsafeIndex initialAcc 0) rest
foldr1 :: (ty -> ty -> ty) -> NonEmpty (Array ty) -> ty
foldr1 f arr = let (initialAcc, rest) = revSplitAt 1 $ getNonEmpty arr
               in foldr f (unsafeIndex initialAcc 0) rest
all :: (ty -> Bool) -> Array ty -> Bool
all p ba = loop 0
  where
    len = length ba
    loop !i
      | i .==# len = True
      | not $ p (unsafeIndex ba i) = False
      | otherwise = loop (i + 1)
any :: (ty -> Bool) -> Array ty -> Bool
any p ba = loop 0
  where
    len = length ba
    loop !i
      | i .==# len = False
      | p (unsafeIndex ba i) = True
      | otherwise = loop (i + 1)
isPrefixOf :: Eq ty => Array ty -> Array ty -> Bool
isPrefixOf pre arr
    | pLen > pArr = False
    | otherwise   = pre == take pLen arr
  where
    !pLen = length pre
    !pArr = length arr
isSuffixOf :: Eq ty => Array ty -> Array ty -> Bool
isSuffixOf suffix arr
    | pLen > pArr = False
    | otherwise   = suffix == revTake pLen arr
  where
    !pLen = length suffix
    !pArr = length arr
builderAppend :: PrimMonad state => ty -> Builder (Array ty) (MArray ty) ty state err ()
builderAppend v = Builder $ State $ \(i, st, e) ->
    if i .==# chunkSize st
        then do
            cur      <- unsafeFreeze (curChunk st)
            newChunk <- new (chunkSize st)
            unsafeWrite newChunk 0 v
            pure ((), (Offset 1, st { prevChunks     = cur : prevChunks st
                                      , prevChunksSize = chunkSize st + prevChunksSize st
                                      , curChunk       = newChunk
                                      }, e))
        else do
            unsafeWrite (curChunk st) i v
            pure ((), (i+1, st, e))
builderBuild :: PrimMonad m => Int -> Builder (Array ty) (MArray ty) ty m err () -> m (Either err (Array ty))
builderBuild sizeChunksI ab
    | sizeChunksI <= 0 = builderBuild 64 ab
    | otherwise        = do
        first      <- new sizeChunks
        (i, st, e) <- snd <$> runState (runBuilder ab) (Offset 0, BuildingState [] (CountOf 0) first sizeChunks, Nothing)
        case e of
          Just err -> pure (Left err)
          Nothing -> do
            cur <- unsafeFreezeShrink (curChunk st) (offsetAsSize i)
            
            let totalSize = prevChunksSize st + offsetAsSize i
            bytes <- new totalSize >>= fillFromEnd totalSize (cur : prevChunks st) >>= unsafeFreeze
            pure (Right bytes)
  where
    sizeChunks = CountOf sizeChunksI
    fillFromEnd _    []     mua = pure mua
    fillFromEnd !end (x:xs) mua = do
        let sz = length x
        let start = end `sizeSub` sz
        unsafeCopyAtRO mua (sizeAsOffset start) x (Offset 0) sz
        fillFromEnd start xs mua
builderBuild_ :: PrimMonad m => Int -> Builder (Array ty) (MArray ty) ty m () () -> m (Array ty)
builderBuild_ sizeChunksI ab = either (\() -> internalError "impossible output") id <$> builderBuild sizeChunksI ab