bifunctors-4.2: Bifunctors

Data.Bifunctor.Apply

Contents

Description

Synopsis

# Biappliable bifunctors

class Bifunctor p => Biapply p where Source

Minimal complete definition

(<<.>>)

Methods

(<<.>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source

(.>>) :: p a b -> p c d -> p c d infixl 4 Source

```a `.>` b ≡ `const` `id` `<\$>` a `<.>` b
```

(<<.) :: p a b -> p c d -> p a b infixl 4 Source

```a `<.` b ≡ `const` `<\$>` a `<.>` b
```

Instances

 Biapply (,) Biapply Const Semigroup x => Biapply ((,,) x) Biapply (Tagged *) Apply f => Biapply (Clown f) Biapply p => Biapply (Flip p) Apply g => Biapply (Joker g) Biapply p => Biapply (WrappedBifunctor p) (Semigroup x, Semigroup y) => Biapply ((,,,) x y) (Apply f, Biapply p) => Biapply (Tannen f p) (Semigroup x, Semigroup y, Semigroup z) => Biapply ((,,,,) x y z) (Biapply p, Apply f, Apply g) => Biapply (Biff p f g)

(<<\$>>) :: (a -> b) -> a -> b infixl 4 Source

(<<..>>) :: Biapply p => p a c -> p (a -> b) (c -> d) -> p b d infixl 4 Source

bilift2 :: Biapply w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f Source

Lift binary functions

bilift3 :: Biapply w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h Source

Lift ternary functions