Copyright | (C) 2011-2015 Edward Kmett |
---|---|

License | BSD-style (see the file LICENSE) |

Maintainer | Edward Kmett <ekmett@gmail.com> |

Stability | provisional |

Portability | portable |

Safe Haskell | Safe |

Language | Haskell98 |

- class Bifunctor p => Biapplicative p where
- (<<$>>) :: (a -> b) -> a -> b
- (<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d
- biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f
- biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
- module Data.Bifunctor

# Biapplicative bifunctors

class Bifunctor p => Biapplicative p where Source

bipure :: a -> b -> p a b Source

(<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source

Biapplicative (,) Source | |

Biapplicative Const Source | |

Biapplicative Arg Source | |

Monoid x => Biapplicative ((,,) x) Source | |

Biapplicative (Tagged *) Source | |

(Monoid x, Monoid y) => Biapplicative ((,,,) x y) Source | |

(Monoid x, Monoid y, Monoid z) => Biapplicative ((,,,,) x y z) Source | |

Applicative f => Biapplicative (Clown * * f) Source | |

Biapplicative p => Biapplicative (Flip * * p) Source | |

Applicative g => Biapplicative (Joker * * g) Source | |

Biapplicative p => Biapplicative (WrappedBifunctor * * p) Source | |

(Monoid x, Monoid y, Monoid z, Monoid w) => Biapplicative ((,,,,,) x y z w) Source | |

(Biapplicative f, Biapplicative g) => Biapplicative (Product * * f g) Source | |

(Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Biapplicative ((,,,,,,) x y z w v) Source | |

(Applicative f, Biapplicative p) => Biapplicative (Tannen * * * f p) Source | |

(Biapplicative p, Applicative f, Applicative g) => Biapplicative (Biff * * * * p f g) Source |

(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d infixl 4 Source

biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f Source

Lift binary functions

biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h Source

Lift ternary functions

module Data.Bifunctor