Copyright | (c) Masahiro Sakai 2018 |
---|---|
License | BSD-style |
Maintainer | masahiro.sakai@gmail.com |
Stability | provisional |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Data.ByteString.Encoding
Description
ByteString
↔ Text
converter based on GHC.IO.Encoding.
Synopsis
- encode :: TextEncoding -> Text -> ByteString
- decode :: TextEncoding -> ByteString -> Text
- data TextEncoding
- latin1 :: TextEncoding
- utf8 :: TextEncoding
- utf8_bom :: TextEncoding
- utf16 :: TextEncoding
- utf16le :: TextEncoding
- utf16be :: TextEncoding
- utf32 :: TextEncoding
- utf32le :: TextEncoding
- utf32be :: TextEncoding
- localeEncoding :: TextEncoding
- char8 :: TextEncoding
- mkTextEncoding :: String -> IO TextEncoding
Converter functions
encode :: TextEncoding -> Text -> ByteString Source #
Encode a strict Text
into strict ByteString
using a given TextEncoding
.
decode :: TextEncoding -> ByteString -> Text Source #
Decode a strict ByteString
to a strit Text
using a given TextEncoding
.
Text encodings (re-exported from System.IO)
data TextEncoding #
A TextEncoding
is a specification of a conversion scheme
between sequences of bytes and sequences of Unicode characters.
For example, UTF-8 is an encoding of Unicode characters into a sequence
of bytes. The TextEncoding
for UTF-8 is utf8
.
Instances
Show TextEncoding | Since: base-4.3.0.0 |
Defined in GHC.IO.Encoding.Types Methods showsPrec :: Int -> TextEncoding -> ShowS # show :: TextEncoding -> String # showList :: [TextEncoding] -> ShowS # |
latin1 :: TextEncoding #
The Latin1 (ISO8859-1) encoding. This encoding maps bytes
directly to the first 256 Unicode code points, and is thus not a
complete Unicode encoding. An attempt to write a character greater than
'\255' to a Handle
using the latin1
encoding will result in an error.
utf8 :: TextEncoding #
The UTF-8 Unicode encoding
The UTF-8 Unicode encoding, with a byte-order-mark (BOM; the byte
sequence 0xEF 0xBB 0xBF). This encoding behaves like utf8
,
except that on input, the BOM sequence is ignored at the beginning
of the stream, and on output, the BOM sequence is prepended.
The byte-order-mark is strictly unnecessary in UTF-8, but is sometimes used to identify the encoding of a file.
utf16 :: TextEncoding #
The UTF-16 Unicode encoding (a byte-order-mark should be used to indicate endianness).
utf16le :: TextEncoding #
The UTF-16 Unicode encoding (litte-endian)
utf16be :: TextEncoding #
The UTF-16 Unicode encoding (big-endian)
utf32 :: TextEncoding #
The UTF-32 Unicode encoding (a byte-order-mark should be used to indicate endianness).
utf32le :: TextEncoding #
The UTF-32 Unicode encoding (litte-endian)
utf32be :: TextEncoding #
The UTF-32 Unicode encoding (big-endian)
localeEncoding :: TextEncoding #
The Unicode encoding of the current locale
This is the initial locale encoding: if it has been subsequently changed by
setLocaleEncoding
this value will not reflect that change.
char8 :: TextEncoding #
An encoding in which Unicode code points are translated to bytes by taking the code point modulo 256. When decoding, bytes are translated directly into the equivalent code point.
This encoding never fails in either direction. However, encoding discards information, so encode followed by decode is not the identity.
Since: base-4.4.0.0
mkTextEncoding :: String -> IO TextEncoding #
Look up the named Unicode encoding. May fail with
isDoesNotExistError
if the encoding is unknown
The set of known encodings is system-dependent, but includes at least:
UTF-8
UTF-16
,UTF-16BE
,UTF-16LE
UTF-32
,UTF-32BE
,UTF-32LE
There is additional notation (borrowed from GNU iconv) for specifying how illegal characters are handled:
- a suffix of
//IGNORE
, e.g.UTF-8//IGNORE
, will cause all illegal sequences on input to be ignored, and on output will drop all code points that have no representation in the target encoding. - a suffix of
//TRANSLIT
will choose a replacement character for illegal sequences or code points. - a suffix of
//ROUNDTRIP
will use a PEP383-style escape mechanism to represent any invalid bytes in the input as Unicode codepoints (specifically, as lone surrogates, which are normally invalid in UTF-32). Upon output, these special codepoints are detected and turned back into the corresponding original byte.
In theory, this mechanism allows arbitrary data to be roundtripped via
a String
with no loss of data. In practice, there are two limitations
to be aware of:
- This only stands a chance of working for an encoding which is an ASCII superset, as for security reasons we refuse to escape any bytes smaller than 128. Many encodings of interest are ASCII supersets (in particular, you can assume that the locale encoding is an ASCII superset) but many (such as UTF-16) are not.
- If the underlying encoding is not itself roundtrippable, this mechanism can fail. Roundtrippable encodings are those which have an injective mapping into Unicode. Almost all encodings meet this criteria, but some do not. Notably, Shift-JIS (CP932) and Big5 contain several different encodings of the same Unicode codepoint.
On Windows, you can access supported code pages with the prefix
CP
; for example, "CP1250"
.