Safe Haskell | None |
---|---|

Language | Haskell2010 |

- type Span a = (a, a)
- mkTrivialSpan :: t -> (t, t)
- inferFromIndices :: VecList Int -> Specification
- inferFromIndicesWithoutLinearity :: VecList Int -> Specification
- inferCore :: (IsNatural n, Permutable n) => [Vec n Int] -> Approximation Spatial
- simplify :: Approximation Spatial -> Approximation Spatial
- simplifySpatial :: Spatial -> Spatial
- reducor :: [a] -> ([a] -> [a]) -> ([a] -> Int) -> [a]
- fromRegionsToSpec :: IsNatural n => [Span (Vec n Int)] -> Approximation Spatial
- toSpecND :: Span (Vec n Int) -> Approximation Spatial
- toSpec1D :: Dimension -> Int -> Int -> Approximation Spatial
- normaliseSpan :: Span (Vec n Int) -> Span (Vec n Int)
- spanBoundingBox :: Span (Vec n Int) -> Span (Vec n Int) -> Span (Vec n Int)
- composeConsecutiveSpans :: Span (Vec n Int) -> Span (Vec n Int) -> [Span (Vec n Int)]
- inferMinimalVectorRegions :: Permutable n => [Vec n Int] -> [Span (Vec n Int)]
- allRegionPermutations :: Permutable n => [Span (Vec n Int)] -> [Span (Vec n Int)]
- foldL :: (a -> a -> [a]) -> [a] -> [a]
- minimaliseRegions :: [Span (Vec n Int)] -> [Span (Vec n Int)]
- containedWithin :: Span (Vec n Int) -> Span (Vec n Int) -> Bool
- class Permutable n where
- type family Selection n a where ...
- data VecList a where
- VL :: (IsNatural n, Permutable n) => [Vec n a] -> VecList a

- data List a where
- List :: (IsNatural n, Permutable n) => Vec n a -> List a

- lnil :: List a
- lcons :: a -> List a -> List a
- fromList :: [a] -> List a
- fromLists :: [[Int]] -> VecList Int
- data EqT a b where

# Documentation

mkTrivialSpan :: t -> (t, t) Source #

inferCore :: (IsNatural n, Permutable n) => [Vec n Int] -> Approximation Spatial Source #

simplifySpatial :: Spatial -> Spatial Source #

fromRegionsToSpec :: IsNatural n => [Span (Vec n Int)] -> Approximation Spatial Source #

composeConsecutiveSpans :: Span (Vec n Int) -> Span (Vec n Int) -> [Span (Vec n Int)] Source #

Given two spans, if they are consecutive (i.e., (lower1, upper1) (lower2, upper2) where lower2 = upper1 + 1) then compose together returning Just of the new span. Otherwise Nothing

inferMinimalVectorRegions :: Permutable n => [Vec n Int] -> [Span (Vec n Int)] Source #

|inferMinimalVectorRegions| a key part of the algorithm, from a list of n-dimensional relative indices it infers a list of (possibly overlapping) 1-dimensional spans (vectors) within the n-dimensional space. Built from |minimalise| and |allRegionPermutations|

allRegionPermutations :: Permutable n => [Span (Vec n Int)] -> [Span (Vec n Int)] Source #

Map from a lists of n-dimensional spans of relative indices into all possible contiguous spans within the n-dimensional space (individual pass)

minimaliseRegions :: [Span (Vec n Int)] -> [Span (Vec n Int)] Source #

Collapses the regions into a small set by looking for potential overlaps and eliminating those that overlap

containedWithin :: Span (Vec n Int) -> Span (Vec n Int) -> Bool Source #

Binary predicate on whether the first region containedWithin the second

class Permutable n where Source #

Defines the (total) class of vector sizes which are permutable, along with
the permutation function which pairs permutations with the `unpermute`

operation

selectionsV :: Vec n a -> [Selection n a] Source #

permutationsV :: Vec n a -> [(Vec n a, Vec n a -> Vec n a)] Source #

Permutable Z Source # | |

Permutable (S Z) Source # | |

Permutable (S n) => Permutable (S (S n)) Source # | |