| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Control.Categorical.Functor
Synopsis
Documentation
class (Category s, Category t) => Functor (s :: α -> α -> *) (t :: β -> β -> *) (f :: α -> β) where Source #
Instances
| Functor s t f => Functor (Iso s :: α -> α -> Type) (t :: β -> β -> Type) (f :: α -> β) Source # | |
Defined in Data.Morphism.Iso | |
| Functor s t f => Functor (Iso s :: α -> α -> Type) (Dual t :: β -> β -> Type) (f :: α -> β) Source # | |
| Category s => Functor (s :: α -> α -> Type) ((->) :: Type -> Type -> Type) (s a :: α -> Type) Source # | |
Defined in Control.Categorical.Functor | |
| Category s => Functor (s :: α -> α -> Type) ((->) :: Type -> Type -> Type) (Proxy :: α -> Type) Source # | |
| Category s => Functor (s :: α -> α -> Type) ((->) :: Type -> Type -> Type) (Const a :: α -> Type) Source # | |
| (Functor s ((->) :: Type -> Type -> Type) f, Functor s ((->) :: Type -> Type -> Type) g) => Functor (s :: k -> k -> Type) ((->) :: Type -> Type -> Type) (Product f g :: k -> Type) Source # | |
| (Functor s ((->) :: Type -> Type -> Type) f, Functor s ((->) :: Type -> Type -> Type) g) => Functor (s :: k -> k -> Type) ((->) :: Type -> Type -> Type) (Sum f g :: k -> Type) Source # | |
| Category s => Functor (Dual s :: k -> k -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (s :: k -> k -> Type) Source # | |
| Functor f => Functor ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (f :: Type -> Type) Source # | |
Defined in Control.Categorical.Functor | |
| Functor ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Identity Source # | |
| Functor ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Either a :: Type -> Type) Source # | |
| Functor ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((,) a :: Type -> Type) Source # | |
Defined in Control.Categorical.Functor | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (Type -> Type) -> (Type -> Type) -> Type) Either Source # | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (Type -> Type) -> (Type -> Type) -> Type) (,) Source # | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Const :: Type -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) :: ((k -> Type) -> k -> Type) -> ((k -> Type) -> k -> Type) -> Type) (Product :: (k -> Type) -> (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) :: ((k -> Type) -> k -> Type) -> ((k -> Type) -> k -> Type) -> Type) (Sum :: (k -> Type) -> (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Product f :: (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Sum f :: (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k2 -> Type) -> (k2 -> Type) -> Type) :: ((k2 -> k1) -> k2 -> Type) -> ((k2 -> k1) -> k2 -> Type) -> Type) (Compose :: (k1 -> Type) -> (k2 -> k1) -> k2 -> Type) Source # | |
| Functor s ((->) :: Type -> Type -> Type) f => Functor (NT s :: (k1 -> k2) -> (k1 -> k2) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Compose f :: (k1 -> k2) -> k1 -> Type) Source # | |
type EndoFunctor s = Functor s s Source #
Deprecated: Use Endofunctor
type Endofunctor s = Functor s s Source #
Instances
| Category s => Functor (Dual s :: k -> k -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (s :: k -> k -> Type) Source # | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (Type -> Type) -> (Type -> Type) -> Type) Either Source # | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (Type -> Type) -> (Type -> Type) -> Type) (,) Source # | |
| Functor ((->) :: Type -> Type -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Const :: Type -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) :: ((k -> Type) -> k -> Type) -> ((k -> Type) -> k -> Type) -> Type) (Product :: (k -> Type) -> (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) :: ((k -> Type) -> k -> Type) -> ((k -> Type) -> k -> Type) -> Type) (Sum :: (k -> Type) -> (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Product f :: (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (Sum f :: (k -> Type) -> k -> Type) Source # | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k2 -> Type) -> (k2 -> Type) -> Type) :: ((k2 -> k1) -> k2 -> Type) -> ((k2 -> k1) -> k2 -> Type) -> Type) (Compose :: (k1 -> Type) -> (k2 -> k1) -> k2 -> Type) Source # | |
| Functor s ((->) :: Type -> Type -> Type) f => Functor (NT s :: (k1 -> k2) -> (k1 -> k2) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Compose f :: (k1 -> k2) -> k1 -> Type) Source # | |
| Category s => Category (NT s :: (k1 -> k2) -> (k1 -> k2) -> Type) Source # | |
| Groupoid s => Groupoid (NT s :: (k1 -> k2) -> (k1 -> k2) -> Type) Source # | |