Contents
Index
category-extras-0.44.1: Various modules and constructs inspired by category theory.
A
B
C
D
E
F
G
H
I
L
M
N
O
P
R
S
T
U
V
X
Z
:
.
=
>
Index - C
cata
Control.Morphism.Cata
cataFree
Control.Monad.Free
chrono
Control.Morphism.Chrono
CoAlg
Control.Functor.Algebra
CoAlgH
Control.Functor.HigherOrder
CoAlgM
Control.Functor.Algebra
coassociate
Control.Bifunctor.Associative
coassociateComp
Control.Functor.Composition
Coassociative
Control.Bifunctor.Associative
Cofree
Control.Comonad.Cofree
cofree
Control.Comonad.Cofree
CofreeB
Control.Comonad.Cofree
coidl
Control.Bifunctor.Monoidal
coidr
Control.Bifunctor.Monoidal
CoKleisli
1 (Type/Class)
Control.Arrow.CoKleisli
2 (Data Constructor)
Control.Arrow.CoKleisli
Comonad
Control.Comonad
ComonadContext
Control.Comonad.Context.Class
ComonadReader
Control.Comonad.Reader.Class
Comonoidal
Control.Bifunctor.Monoidal
CompB
1 (Type/Class)
Control.Bifunctor.Composition
2 (Data Constructor)
Control.Bifunctor.Composition
CompF
1 (Type/Class)
Control.Functor.Composition
2 (Data Constructor)
Control.Functor.Composition
compose
Control.Functor.Composition.Class
Composition
Control.Functor.Composition.Class
ConstantF
1 (Type/Class)
Control.Functor.Constant
2 (Data Constructor)
Control.Functor.Constant
ConstB
1 (Type/Class)
Control.Bifunctor.Composition
2 (Data Constructor)
Control.Bifunctor.Composition
Context
1 (Type/Class)
Control.Comonad.Context
2 (Data Constructor)
Control.Comonad.Context
ContextT
1 (Type/Class)
Control.Comonad.Context
2 (Data Constructor)
Control.Comonad.Context
ContraF
1 (Type/Class)
Control.Functor.Contravariant
2 (Data Constructor)
Control.Functor.Contravariant
contramap
Control.Functor.Contravariant
ContravariantFunctor
Control.Functor.Contravariant
copaugment
Control.Comonad.Parameterized
copoint
Control.Functor.Pointed
Copointed
Control.Functor.Pointed
costrength
Control.Functor.Strong
counit
Control.Functor.Adjunction