| Portability | non-portable (type families) |
|---|---|
| Stability | experimental |
| Maintainer | ross@soi.city.ac.uk |
| Safe Haskell | Safe-Inferred |
Control.Monad.State.Strict
Description
Strict state monads.
This module is inspired by the paper /Functional Programming with Overloading and Higher-Order Polymorphism/, Mark P Jones (http://web.cecs.pdx.edu/~mpj/) Advanced School of Functional Programming, 1995.
- class Monad m => MonadState m where
- modify :: MonadState m => (StateType m -> StateType m) -> m ()
- gets :: MonadState m => (StateType m -> a) -> m a
- type State s = StateT s Identity
- runState :: State s a -> s -> (a, s)
- evalState :: State s a -> s -> a
- execState :: State s a -> s -> s
- mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
- withState :: (s -> s) -> State s a -> State s a
- newtype StateT s m a = StateT {
- runStateT :: s -> m (a, s)
- evalStateT :: Monad m => StateT s m a -> s -> m a
- execStateT :: Monad m => StateT s m a -> s -> m s
- mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
- withStateT :: (s -> s) -> StateT s m a -> StateT s m a
- module Control.Monad
- module Control.Monad.Fix
- module Control.Monad.Trans
MonadState class
class Monad m => MonadState m whereSource
get returns the state from the internals of the monad.
put replaces the state inside the monad.
Instances
| MonadState m => MonadState (IdentityT m) | |
| MonadState m => MonadState (ListT m) | |
| MonadState m => MonadState (MaybeT m) | |
| MonadState m => MonadState (ContT r m) | |
| (Error e, MonadState m) => MonadState (ErrorT e m) | |
| MonadState m => MonadState (ReaderT r m) | |
| Monad m => MonadState (StateT s m) | |
| Monad m => MonadState (StateT s m) | |
| (Monoid w, MonadState m) => MonadState (WriterT w m) | |
| (Monoid w, MonadState m) => MonadState (WriterT w m) | |
| (Monad m, Monoid w) => MonadState (RWST r w s m) | |
| (Monad m, Monoid w) => MonadState (RWST r w s m) |
modify :: MonadState m => (StateType m -> StateType m) -> m ()Source
Monadic state transformer.
Maps an old state to a new state inside a state monad. The old state is thrown away.
Main> :t modify ((+1) :: Int -> Int)
modify (...) :: (MonadState Int a) => a ()
This says that modify (+1) acts over any
Monad that is a member of the MonadState class,
with an Int state.
gets :: MonadState m => (StateType m -> a) -> m aSource
Gets specific component of the state, using a projection function supplied.
The State monad
The StateT monad transformer
newtype StateT s m a
Instances
| MonadTrans (StateT s) | |
| Monad m => Monad (StateT s m) | |
| Functor m => Functor (StateT s m) | |
| MonadFix m => MonadFix (StateT s m) | |
| MonadPlus m => MonadPlus (StateT s m) | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
| (Functor m, MonadPlus m) => Alternative (StateT s m) | |
| MonadIO m => MonadIO (StateT s m) | |
| MonadCont m => MonadCont (StateT s m) | |
| MonadError m => MonadError (StateT s m) | |
| MonadReader m => MonadReader (StateT s m) | |
| Monad m => MonadState (StateT s m) | |
| MonadWriter m => MonadWriter (StateT s m) |
evalStateT :: Monad m => StateT s m a -> s -> m a
execStateT :: Monad m => StateT s m a -> s -> m s
withStateT :: (s -> s) -> StateT s m a -> StateT s m a
module Control.Monad
module Control.Monad.Fix
module Control.Monad.Trans
Examples
A function to increment a counter. Taken from the paper Generalising Monads to Arrows, John Hughes (http://www.math.chalmers.se/~rjmh/), November 1998:
tick :: State Int Int
tick = do n <- get
put (n+1)
return n
Add one to the given number using the state monad:
plusOne :: Int -> Int plusOne n = execState tick n
A contrived addition example. Works only with positive numbers:
plus :: Int -> Int -> Int plus n x = execState (sequence $ replicate n tick) x
An example from The Craft of Functional Programming, Simon Thompson (http://www.cs.kent.ac.uk/people/staff/sjt/), Addison-Wesley 1999: "Given an arbitrary tree, transform it to a tree of integers in which the original elements are replaced by natural numbers, starting from 0. The same element has to be replaced by the same number at every occurrence, and when we meet an as-yet-unvisited element we have to find a 'new' number to match it with:"
data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq) type Table a = [a]
numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
numberTree Nil = return Nil
numberTree (Node x t1 t2)
= do num <- numberNode x
nt1 <- numberTree t1
nt2 <- numberTree t2
return (Node num nt1 nt2)
where
numberNode :: Eq a => a -> State (Table a) Int
numberNode x
= do table <- get
(newTable, newPos) <- return (nNode x table)
put newTable
return newPos
nNode:: (Eq a) => a -> Table a -> (Table a, Int)
nNode x table
= case (findIndexInList (== x) table) of
Nothing -> (table ++ [x], length table)
Just i -> (table, i)
findIndexInList :: (a -> Bool) -> [a] -> Maybe Int
findIndexInList = findIndexInListHelp 0
findIndexInListHelp _ _ [] = Nothing
findIndexInListHelp count f (h:t)
= if (f h)
then Just count
else findIndexInListHelp (count+1) f t
numTree applies numberTree with an initial state:
numTree :: (Eq a) => Tree a -> Tree Int numTree t = evalState (numberTree t) []
testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
sumTree is a little helper function that does not use the State monad:
sumTree :: (Num a) => Tree a -> a sumTree Nil = 0 sumTree (Node e t1 t2) = e + (sumTree t1) + (sumTree t2)