{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module CLaSH.Sized.Internal.Signed
(
Signed (..)
, size#
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, minBound#
, maxBound#
, (+#)
, (-#)
, (*#)
, negate#
, abs#
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, div#
, mod#
, toInteger#
, and#
, or#
, xor#
, complement#
, shiftL#
, shiftR#
, rotateL#
, rotateR#
, popCount#
, resize#
, truncateB#
, minBoundSym#
)
where
import Control.Lens (Index, Ixed (..), IxValue)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.Default (Default (..))
import GHC.TypeLits (KnownNat, Nat, type (+), natVal)
import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitrarySizedBoundedIntegral,
coarbitraryIntegral, shrinkIntegral)
import CLaSH.Class.BitPack (BitPack (..))
import CLaSH.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import CLaSH.Class.Resize (Resize (..))
import CLaSH.Prelude.BitIndex ((!), msb, replaceBit, split)
import CLaSH.Prelude.BitReduction (reduceAnd, reduceOr)
import CLaSH.Promoted.Ord (Max)
import CLaSH.Sized.Internal.BitVector (BitVector (..), Bit, (++#), high, low)
import qualified CLaSH.Sized.Internal.BitVector as BV
newtype Signed (n :: Nat) =
S { unsafeToInteger :: Integer}
{-# NOINLINE size# #-}
size# :: KnownNat n => Signed n -> Int
size# bv = fromInteger (natVal bv)
instance Show (Signed n) where
show (S n) = show n
instance KnownNat n => BitPack (Signed n) where
type BitSize (Signed n) = n
pack = pack#
unpack = unpack#
{-# NOINLINE pack# #-}
pack# :: KnownNat n => Signed n -> BitVector n
pack# s@(S i) = BV (i `mod` maxI)
where
maxI = 2 ^ natVal s
{-# NOINLINE unpack# #-}
unpack# :: KnownNat n => BitVector n -> Signed n
unpack# (BV i) = fromInteger_INLINE i
instance Eq (Signed n) where
(==) = eq#
(/=) = neq#
{-# NOINLINE eq# #-}
eq# :: Signed n -> Signed n -> Bool
eq# (S v1) (S v2) = v1 == v2
{-# NOINLINE neq# #-}
neq# :: Signed n -> Signed n -> Bool
neq# (S v1) (S v2) = v1 /= v2
instance Ord (Signed n) where
(<) = lt#
(>=) = ge#
(>) = gt#
(<=) = le#
lt#,ge#,gt#,le# :: Signed n -> Signed n -> Bool
{-# NOINLINE lt# #-}
lt# (S n) (S m) = n < m
{-# NOINLINE ge# #-}
ge# (S n) (S m) = n >= m
{-# NOINLINE gt# #-}
gt# (S n) (S m) = n > m
{-# NOINLINE le# #-}
le# (S n) (S m) = n <= m
instance KnownNat n => Enum (Signed n) where
succ = (+# fromInteger# 1)
pred = (-# fromInteger# 1)
toEnum = fromInteger# . toInteger
fromEnum = fromEnum . toInteger#
enumFrom = enumFrom#
enumFromThen = enumFromThen#
enumFromTo = enumFromTo#
enumFromThenTo = enumFromThenTo#
{-# NOINLINE enumFrom# #-}
{-# NOINLINE enumFromThen# #-}
{-# NOINLINE enumFromTo# #-}
{-# NOINLINE enumFromThenTo# #-}
enumFrom# :: KnownNat n => Signed n -> [Signed n]
enumFromThen# :: KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromTo# :: KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromThenTo# :: KnownNat n => Signed n -> Signed n -> Signed n -> [Signed n]
enumFrom# x = map toEnum [fromEnum x ..]
enumFromThen# x y = map toEnum [fromEnum x, fromEnum y ..]
enumFromTo# x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThenTo# x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y]
instance KnownNat n => Bounded (Signed n) where
minBound = minBound#
maxBound = maxBound#
minBound#,maxBound# :: KnownNat n => Signed n
{-# NOINLINE minBound# #-}
minBound# = let res = S $ negate $ 2 ^ (natVal res - 1) in res
{-# NOINLINE maxBound# #-}
maxBound# = let res = S $ 2 ^ (natVal res - 1) - 1 in res
instance KnownNat n => Num (Signed n) where
(+) = (+#)
(-) = (-#)
(*) = (*#)
negate = negate#
abs = abs#
signum s = if s < 0 then (-1) else
if s > 0 then 1 else 0
fromInteger = fromInteger#
(+#), (-#), (*#) :: KnownNat n => Signed n -> Signed n -> Signed n
{-# NOINLINE (+#) #-}
(S a) +# (S b) = fromInteger_INLINE (a + b)
{-# NOINLINE (-#) #-}
(S a) -# (S b) = fromInteger_INLINE (a - b)
{-# NOINLINE (*#) #-}
(S a) *# (S b) = fromInteger_INLINE (a * b)
negate#,abs# :: KnownNat n => Signed n -> Signed n
{-# NOINLINE negate# #-}
negate# (S n) = fromInteger_INLINE (negate n)
{-# NOINLINE abs# #-}
abs# (S n) = fromInteger_INLINE (abs n)
{-# NOINLINE fromInteger# #-}
fromInteger# :: KnownNat n => Integer -> Signed (n :: Nat)
fromInteger# = fromInteger_INLINE
{-# INLINE fromInteger_INLINE #-}
fromInteger_INLINE :: KnownNat n => Integer -> Signed n
fromInteger_INLINE i
| n == 0 = S 0
| otherwise = res
where
n = natVal res
sz = 2 ^ (n - 1)
res = case divMod i sz of
(s,i') | even s -> S i'
| otherwise -> S (i' - sz)
instance (KnownNat (1 + Max m n), KnownNat (m + n)) =>
ExtendingNum (Signed m) (Signed n) where
type AResult (Signed m) (Signed n) = Signed (1 + Max m n)
plus = plus#
minus = minus#
type MResult (Signed m) (Signed n) = Signed (m + n)
times = times#
plus#, minus# :: KnownNat (1 + Max m n) => Signed m -> Signed n
-> Signed (1 + Max m n)
{-# NOINLINE plus# #-}
plus# (S a) (S b) = fromInteger_INLINE (a + b)
{-# NOINLINE minus# #-}
minus# (S a) (S b) = fromInteger_INLINE (a - b)
{-# NOINLINE times# #-}
times# :: KnownNat (m + n) => Signed m -> Signed n -> Signed (m + n)
times# (S a) (S b) = fromInteger_INLINE (a * b)
instance KnownNat n => Real (Signed n) where
toRational = toRational . toInteger#
instance KnownNat n => Integral (Signed n) where
quot = quot#
rem = rem#
div = div#
mod = mod#
quotRem n d = (n `quot#` d,n `rem#` d)
divMod n d = (n `div#` d,n `mod#` d)
toInteger = toInteger#
quot#,rem# :: Signed n -> Signed n -> Signed n
{-# NOINLINE quot# #-}
quot# (S a) (S b) = S (a `quot` b)
{-# NOINLINE rem# #-}
rem# (S a) (S b) = S (a `rem` b)
div#,mod# :: KnownNat n => Signed n -> Signed n -> Signed n
{-# NOINLINE div# #-}
div# (S a) (S b) = S (a `div` b)
{-# NOINLINE mod# #-}
mod# (S a) (S b) = S (a `mod` b)
{-# NOINLINE toInteger# #-}
toInteger# :: Signed n -> Integer
toInteger# (S n) = n
instance KnownNat n => Bits (Signed n) where
(.&.) = and#
(.|.) = or#
xor = xor#
complement = complement#
zeroBits = 0
bit i = replaceBit i high 0
setBit v i = replaceBit i high v
clearBit v i = replaceBit i low v
complementBit v i = replaceBit i (BV.complement# (v ! i)) v
testBit v i = v ! i == 1
bitSizeMaybe v = Just (size# v)
bitSize = size#
isSigned _ = True
shiftL v i = shiftL# v i
shiftR v i = shiftR# v i
rotateL v i = rotateL# v i
rotateR v i = rotateR# v i
popCount = popCount#
and#,or#,xor# :: KnownNat n => Signed n -> Signed n -> Signed n
{-# NOINLINE and# #-}
and# (S a) (S b) = fromInteger_INLINE (a .&. b)
{-# NOINLINE or# #-}
or# (S a) (S b) = fromInteger_INLINE (a .|. b)
{-# NOINLINE xor# #-}
xor# (S a) (S b) = fromInteger_INLINE (xor a b)
{-# NOINLINE complement# #-}
complement# :: KnownNat n => Signed n -> Signed n
complement# = unpack# . complement . pack#
shiftL#,shiftR#,rotateL#,rotateR# :: KnownNat n => Signed n -> Int -> Signed n
{-# NOINLINE shiftL# #-}
shiftL# _ b | b < 0 = error "'shiftL undefined for negative numbers"
shiftL# (S n) b = fromInteger_INLINE (shiftL n b)
{-# NOINLINE shiftR# #-}
shiftR# _ b | b < 0 = error "'shiftR undefined for negative numbers"
shiftR# (S n) b = fromInteger_INLINE (shiftR n b)
{-# NOINLINE rotateL# #-}
rotateL# _ b | b < 0 = error "'shiftL undefined for negative numbers"
rotateL# s@(S n) b = fromInteger_INLINE (l .|. r)
where
l = shiftL n b'
r = shiftR n b'' .&. mask
mask = 2 ^ b' - 1
b' = b `mod` sz
b'' = sz - b'
sz = fromInteger (natVal s)
{-# NOINLINE rotateR# #-}
rotateR# _ b | b < 0 = error "'shiftR undefined for negative numbers"
rotateR# s@(S n) b = fromInteger_INLINE (l .|. r)
where
l = shiftR n b' .&. mask
r = shiftL n b''
mask = 2 ^ b'' - 1
b' = b `mod` sz
b'' = sz - b'
sz = fromInteger (natVal s)
{-# NOINLINE popCount# #-}
popCount# :: KnownNat n => Signed n -> Int
popCount# s@(S i) = popCount i'
where
maxI = 2 ^ natVal s
i' = i `mod` maxI
instance KnownNat n => FiniteBits (Signed n) where
finiteBitSize = size#
instance Resize Signed where
resize = resize#
extend = resize#
zeroExtend s = unpack# (0 ++# pack s)
signExtend = resize#
truncateB = truncateB#
{-# NOINLINE resize# #-}
resize# :: (KnownNat n, KnownNat m) => Signed n -> Signed m
resize# s@(S i) | n <= m = extended
| otherwise = truncated
where
n = fromInteger (natVal s)
m = fromInteger (natVal extended)
extended = fromInteger_INLINE i
mask = (2 ^ (m - 1)) - 1
sign = 2 ^ (m - 1)
i' = i .&. mask
truncated = if testBit i (n - 1)
then fromInteger_INLINE (i' .|. sign)
else fromInteger_INLINE i'
{-# NOINLINE truncateB# #-}
truncateB# :: KnownNat m => Signed (n + m) -> Signed m
truncateB# (S n) = fromInteger_INLINE n
instance KnownNat n => Default (Signed n) where
def = fromInteger# 0
instance KnownNat n => Lift (Signed n) where
lift s@(S i) = sigE [| fromInteger# i |] (decSigned (natVal s))
decSigned :: Integer -> TypeQ
decSigned n = appT (conT ''Signed) (litT $ numTyLit n)
instance (KnownNat n, KnownNat (1 + n), KnownNat (n + n)) =>
SaturatingNum (Signed n) where
satPlus SatWrap a b = a +# b
satPlus w a b = case msb r `xor` msb r' of
0 -> unpack# r'
_ -> case msb a .&. msb b of
1 -> case w of
SatBound -> minBound#
SatSymmetric -> minBoundSym#
_ -> fromInteger# 0
_ -> case w of
SatZero -> fromInteger# 0
_ -> maxBound#
where
r = plus# a b
(_,r') = split r
satMin SatWrap a b = a -# b
satMin w a b = case msb r `xor` msb r' of
0 -> unpack# r'
_ -> case msb a ++# msb b of
2 -> case w of
SatBound -> minBound#
SatSymmetric -> minBoundSym#
_ -> fromInteger# 0
_ -> case w of
SatZero -> fromInteger# 0
_ -> maxBound#
where
r = minus# a b
(_,r') = split r
satMult SatWrap a b = a *# b
satMult w a b = case overflow of
1 -> unpack# rR
_ -> case msb rL of
0 -> case w of
SatZero -> fromInteger# 0
_ -> maxBound#
_ -> case w of
SatBound -> minBound#
SatSymmetric -> minBoundSym#
_ -> fromInteger# 0
where
overflow = complement (reduceOr (msb rR ++# pack rL)) .|.
reduceAnd (msb rR ++# pack rL)
r = times# a b
(rL,rR) = split r
minBoundSym# :: KnownNat n => Signed n
minBoundSym# = minBound# +# fromInteger# 1
instance KnownNat n => Arbitrary (Signed n) where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance KnownNat n => CoArbitrary (Signed n) where
coarbitrary = coarbitraryIntegral
type instance Index (Signed n) = Int
type instance IxValue (Signed n) = Bit
instance KnownNat n => Ixed (Signed n) where
ix i f s = unpack# <$> BV.replaceBit# (pack# s) i
<$> f (BV.index# (pack# s) i)