{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module CLaSH.Sized.Internal.Unsigned
(
Unsigned (..)
, size#
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, minBound#
, maxBound#
, (+#)
, (-#)
, (*#)
, negate#
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, toInteger#
, and#
, or#
, xor#
, complement#
, shiftL#
, shiftR#
, rotateL#
, rotateR#
, popCount#
, resize#
)
where
import Control.Lens (Index, Ixed (..), IxValue)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.Default (Default (..))
import GHC.TypeLits (KnownNat, Nat, type (+), natVal)
import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitrarySizedBoundedIntegral,
coarbitraryIntegral, shrinkIntegral)
import CLaSH.Class.BitPack (BitPack (..))
import CLaSH.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import CLaSH.Class.Resize (Resize (..))
import CLaSH.Prelude.BitIndex ((!), msb, replaceBit, split)
import CLaSH.Prelude.BitReduction (reduceOr)
import CLaSH.Promoted.Ord (Max)
import CLaSH.Sized.Internal.BitVector (BitVector (..), Bit, high, low)
import qualified CLaSH.Sized.Internal.BitVector as BV
newtype Unsigned (n :: Nat) =
U { unsafeToInteger :: Integer }
{-# NOINLINE size# #-}
size# :: KnownNat n => Unsigned n -> Int
size# u = fromInteger (natVal u)
instance Show (Unsigned n) where
show (U i) = show i
instance BitPack (Unsigned n) where
type BitSize (Unsigned n) = n
pack = pack#
unpack = unpack#
{-# NOINLINE pack# #-}
pack# :: Unsigned n -> BitVector n
pack# (U i) = BV i
{-# NOINLINE unpack# #-}
unpack# :: BitVector n -> Unsigned n
unpack# (BV i) = U i
instance Eq (Unsigned n) where
(==) = eq#
(/=) = neq#
{-# NOINLINE eq# #-}
eq# :: Unsigned n -> Unsigned n -> Bool
eq# (U v1) (U v2) = v1 == v2
{-# NOINLINE neq# #-}
neq# :: Unsigned n -> Unsigned n -> Bool
neq# (U v1) (U v2) = v1 /= v2
instance Ord (Unsigned n) where
(<) = lt#
(>=) = ge#
(>) = gt#
(<=) = le#
lt#,ge#,gt#,le# :: Unsigned n -> Unsigned n -> Bool
{-# NOINLINE lt# #-}
lt# (U n) (U m) = n < m
{-# NOINLINE ge# #-}
ge# (U n) (U m) = n >= m
{-# NOINLINE gt# #-}
gt# (U n) (U m) = n > m
{-# NOINLINE le# #-}
le# (U n) (U m) = n <= m
instance KnownNat n => Enum (Unsigned n) where
succ = (+# fromInteger# 1)
pred = (-# fromInteger# 1)
toEnum = fromInteger# . toInteger
fromEnum = fromEnum . toInteger#
enumFrom = enumFrom#
enumFromThen = enumFromThen#
enumFromTo = enumFromTo#
enumFromThenTo = enumFromThenTo#
{-# NOINLINE enumFrom# #-}
{-# NOINLINE enumFromThen# #-}
{-# NOINLINE enumFromTo# #-}
{-# NOINLINE enumFromThenTo# #-}
enumFrom# :: KnownNat n => Unsigned n -> [Unsigned n]
enumFromThen# :: KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo# :: KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo# :: KnownNat n => Unsigned n -> Unsigned n -> Unsigned n
-> [Unsigned n]
enumFrom# x = map toEnum [fromEnum x ..]
enumFromThen# x y = map toEnum [fromEnum x, fromEnum y ..]
enumFromTo# x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThenTo# x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y]
instance KnownNat n => Bounded (Unsigned n) where
minBound = minBound#
maxBound = maxBound#
{-# NOINLINE minBound# #-}
minBound# :: KnownNat n => Unsigned n
minBound# = U 0
{-# NOINLINE maxBound# #-}
maxBound# :: KnownNat n => Unsigned n
maxBound# = let res = U ((2 ^ natVal res) - 1) in res
instance KnownNat n => Num (Unsigned n) where
(+) = (+#)
(-) = (-#)
(*) = (*#)
negate = negate#
abs = id
signum bv = resize# (unpack# (reduceOr bv))
fromInteger = fromInteger#
(+#),(-#),(*#) :: KnownNat n => Unsigned n -> Unsigned n -> Unsigned n
{-# NOINLINE (+#) #-}
(+#) (U i) (U j) = fromInteger_INLINE (i + j)
{-# NOINLINE (-#) #-}
(-#) (U i) (U j) = fromInteger_INLINE (i - j)
{-# NOINLINE (*#) #-}
(*#) (U i) (U j) = fromInteger_INLINE (i * j)
{-# NOINLINE negate# #-}
negate# :: KnownNat n => Unsigned n -> Unsigned n
negate# u@(U i) = U (sz - i)
where
sz = 2 ^ natVal u
{-# NOINLINE fromInteger# #-}
fromInteger# :: KnownNat n => Integer -> Unsigned n
fromInteger# = fromInteger_INLINE
{-# INLINE fromInteger_INLINE #-}
fromInteger_INLINE :: KnownNat n => Integer -> Unsigned n
fromInteger_INLINE i = let res = U (i `mod` (2 ^ natVal res)) in res
instance (KnownNat (1 + Max m n), KnownNat (m + n)) =>
ExtendingNum (Unsigned m) (Unsigned n) where
type AResult (Unsigned m) (Unsigned n) = Unsigned (1 + Max m n)
plus = plus#
minus = minus#
type MResult (Unsigned m) (Unsigned n) = Unsigned (m + n)
times = times#
plus#, minus# :: KnownNat (1 + Max m n) => Unsigned m -> Unsigned n
-> Unsigned (1 + Max m n)
{-# NOINLINE plus# #-}
plus# (U a) (U b) = fromInteger_INLINE (a + b)
{-# NOINLINE minus# #-}
minus# (U a) (U b) = fromInteger_INLINE (a - b)
{-# NOINLINE times# #-}
times# :: KnownNat (m + n) => Unsigned m -> Unsigned n -> Unsigned (m + n)
times# (U a) (U b) = fromInteger_INLINE (a * b)
instance KnownNat n => Real (Unsigned n) where
toRational = toRational . toInteger#
instance KnownNat n => Integral (Unsigned n) where
quot = quot#
rem = rem#
div = quot#
mod = rem#
quotRem n d = (n `quot#` d,n `rem#` d)
divMod n d = (n `quot#` d,n `rem#` d)
toInteger = toInteger#
quot#,rem# :: Unsigned n -> Unsigned n -> Unsigned n
{-# NOINLINE quot# #-}
quot# (U i) (U j) = U (i `quot` j)
{-# NOINLINE rem# #-}
rem# (U i) (U j) = U (i `rem` j)
{-# NOINLINE toInteger# #-}
toInteger# :: Unsigned n -> Integer
toInteger# (U i) = i
instance KnownNat n => Bits (Unsigned n) where
(.&.) = and#
(.|.) = or#
xor = xor#
complement = complement#
zeroBits = 0
bit i = replaceBit i high 0
setBit v i = replaceBit i high v
clearBit v i = replaceBit i low v
complementBit v i = replaceBit i (BV.complement# (v ! i)) v
testBit v i = v ! i == high
bitSizeMaybe v = Just (size# v)
bitSize = size#
isSigned _ = False
shiftL v i = shiftL# v i
shiftR v i = shiftR# v i
rotateL v i = rotateL# v i
rotateR v i = rotateR# v i
popCount = popCount#
{-# NOINLINE and# #-}
and# :: Unsigned n -> Unsigned n -> Unsigned n
and# (U v1) (U v2) = U (v1 .&. v2)
{-# NOINLINE or# #-}
or# :: Unsigned n -> Unsigned n -> Unsigned n
or# (U v1) (U v2) = U (v1 .|. v2)
{-# NOINLINE xor# #-}
xor# :: Unsigned n -> Unsigned n -> Unsigned n
xor# (U v1) (U v2) = U (v1 `xor` v2)
{-# NOINLINE complement# #-}
complement# :: KnownNat n => Unsigned n -> Unsigned n
complement# (U i) = fromInteger_INLINE (complement i)
shiftL#, shiftR#, rotateL#, rotateR# :: KnownNat n => Unsigned n -> Int
-> Unsigned n
{-# NOINLINE shiftL# #-}
shiftL# (U v) i
| i < 0 = error
$ "'shiftL undefined for negative number: " ++ show i
| otherwise = fromInteger_INLINE (shiftL v i)
{-# NOINLINE shiftR# #-}
shiftR# (U v) i
| i < 0 = error
$ "'shiftR undefined for negative number: " ++ show i
| otherwise = fromInteger_INLINE (shiftR v i)
{-# NOINLINE rotateL# #-}
rotateL# _ b | b < 0 = error "'shiftL undefined for negative numbers"
rotateL# bv@(U n) b = fromInteger_INLINE (l .|. r)
where
l = shiftL n b'
r = shiftR n b''
b' = b `mod` sz
b'' = sz - b'
sz = fromInteger (natVal bv)
{-# NOINLINE rotateR# #-}
rotateR# _ b | b < 0 = error "'shiftR undefined for negative numbers"
rotateR# bv@(U n) b = fromInteger_INLINE (l .|. r)
where
l = shiftR n b'
r = shiftL n b''
b' = b `mod` sz
b'' = sz - b'
sz = fromInteger (natVal bv)
{-# NOINLINE popCount# #-}
popCount# :: Unsigned n -> Int
popCount# (U i) = popCount i
instance KnownNat n => FiniteBits (Unsigned n) where
finiteBitSize = size#
instance Resize Unsigned where
resize = resize#
zeroExtend = resize#
signExtend = resize#
truncateB = resize#
{-# NOINLINE resize# #-}
resize# :: KnownNat m => Unsigned n -> Unsigned m
resize# (U i) = fromInteger_INLINE i
instance KnownNat n => Default (Unsigned n) where
def = minBound#
instance KnownNat n => Lift (Unsigned n) where
lift u@(U i) = sigE [| fromInteger# i |] (decUnsigned (natVal u))
decUnsigned :: Integer -> TypeQ
decUnsigned n = appT (conT ''Unsigned) (litT $ numTyLit n)
instance (KnownNat n, KnownNat (1 + n), KnownNat (n + n)) =>
SaturatingNum (Unsigned n) where
satPlus SatWrap a b = a +# b
satPlus w a b = case msb r of
0 -> resize# r
_ -> case w of
SatZero -> minBound#
_ -> maxBound#
where
r = plus# a b
satMin SatWrap a b = a -# b
satMin _ a b = case msb r of
0 -> resize# r
_ -> minBound#
where
r = minus# a b
satMult SatWrap a b = a *# b
satMult w a b = case rL of
0 -> unpack# rR
_ -> case w of
SatZero -> minBound#
_ -> maxBound#
where
r = times# a b
(rL,rR) = split r
instance KnownNat n => Arbitrary (Unsigned n) where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance KnownNat n => CoArbitrary (Unsigned n) where
coarbitrary = coarbitraryIntegral
type instance Index (Unsigned n) = Int
type instance IxValue (Unsigned n) = Bit
instance KnownNat n => Ixed (Unsigned n) where
ix i f s = unpack# <$> BV.replaceBit# (pack# s) i
<$> f (BV.index# (pack# s) i)