| Copyright | (C) 2013-2016 University of Twente 2017 Google Inc. |
|---|---|
| License | BSD2 (see the file LICENSE) |
| Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
| Safe Haskell | Safe |
| Language | Haskell2010 |
Clash.Explicit.Moore
Description
Whereas the output of a Mealy machine depends on current transition, the output of a Moore machine depends on the previous state.
Moore machines are strictly less expressive, but may impose laxer timing requirements.
Synopsis
- moore :: Clock domain gated -> Reset domain synchronous -> (s -> i -> s) -> (s -> o) -> s -> Signal domain i -> Signal domain o
- mooreB :: (Bundle i, Bundle o) => Clock domain gated -> Reset domain synchronous -> (s -> i -> s) -> (s -> o) -> s -> Unbundled domain i -> Unbundled domain o
- medvedev :: Clock domain gated -> Reset domain synchronous -> (s -> i -> s) -> s -> Signal domain i -> Signal domain s
- medvedevB :: (Bundle i, Bundle s) => Clock domain gated -> Reset domain synchronous -> (s -> i -> s) -> s -> Unbundled domain i -> Unbundled domain s
Moore machines with explicit clock and reset ports
Arguments
| :: Clock domain gated |
|
| -> Reset domain synchronous | |
| -> (s -> i -> s) | Transfer function in moore machine form:
|
| -> (s -> o) | Output function in moore machine form:
|
| -> s | Initial state |
| -> Signal domain i -> Signal domain o | Synchronous sequential function with input and output matching that of the moore machine |
Create a synchronous function from a combinational function describing a moore machine
macT :: Int -- Current state -> (Int,Int) -- Input -> (Int,Int) -- Updated state macT s (x,y) = x * y + s mac ::Clockmac Source ->Resetmac Asynchronous ->Signalmac (Int, Int) ->Signalmac Int mac clk rst =mooreclk rst macT id 0
>>>simulate (mac systemClockGen systemResetGen) [(1,1),(2,2),(3,3),(4,4)][0,1,5,14... ...
Synchronous sequential functions can be composed just like their combinational counterpart:
dualMac :: Clock domain gated -> Reset domain synchronous -> (Signaldomain Int,Signaldomain Int) -> (Signaldomain Int,Signaldomain Int) ->Signaldomain Int dualMac clk rst (a,b) (x,y) = s1 + s2 where s1 =mooreclk rst mac id 0 (bundle(a,x)) s2 =mooreclk rst mac id 0 (bundle(b,y))
Arguments
| :: (Bundle i, Bundle o) | |
| => Clock domain gated | |
| -> Reset domain synchronous | |
| -> (s -> i -> s) | Transfer function in moore machine form:
|
| -> (s -> o) | Output function in moore machine form:
|
| -> s | Initial state |
| -> Unbundled domain i -> Unbundled domain o | Synchronous sequential function with input and output matching that of the moore machine |
A version of moore that does automatic Bundleing
Given a functions t and o of types:
t :: Int -> (Bool, Int) -> Int o :: Int -> (Int, Bool)
When we want to make compositions of t and o in g using moore', we have to
write:
g clk rst a b c = (b1,b2,i2)
where
(i1,b1) = unbundle (moore clk rst t o 0 (bundle (a,b)))
(i2,b2) = unbundle (moore clk rst t o 3 (bundle (i1,c)))
Using mooreB' however we can write:
g clk rst a b c = (b1,b2,i2)
where
(i1,b1) = mooreB clk rst t o 0 (a,b)
(i2,b2) = mooreB clk rst t o 3 (i1,c)