| Copyright | (C) 2013-2016 University of Twente 2017 Google Inc. |
|---|---|
| License | BSD2 (see the file LICENSE) |
| Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
| Safe Haskell | Safe |
| Language | Haskell2010 |
Clash.Prelude.Moore
Contents
Description
Whereas the output of a Mealy machine depends on current transition, the output of a Moore machine depends on the previous state.
Moore machines are strictly less expressive, but may impose laxer timing requirements.
Synopsis
- moore :: HiddenClockReset domain gated synchronous => (s -> i -> s) -> (s -> o) -> s -> Signal domain i -> Signal domain o
- mooreB :: (Bundle i, Bundle o, HiddenClockReset domain gated synchronous) => (s -> i -> s) -> (s -> o) -> s -> Unbundled domain i -> Unbundled domain o
- medvedev :: HiddenClockReset domain gated synchronous => (s -> i -> s) -> s -> Signal domain i -> Signal domain s
- medvedevB :: (Bundle i, Bundle s, HiddenClockReset domain gated synchronous) => (s -> i -> s) -> s -> Unbundled domain i -> Unbundled domain s
Moore machine
Arguments
| :: HiddenClockReset domain gated synchronous | |
| => (s -> i -> s) | Transfer function in moore machine form:
|
| -> (s -> o) | Output function in moore machine form:
|
| -> s | Initial state |
| -> Signal domain i -> Signal domain o | Synchronous sequential function with input and output matching that of the moore machine |
Create a synchronous function from a combinational function describing a moore machine
macT :: Int -- Current state
-> (Int,Int) -- Input
-> Int -- Updated state
macT s (x,y) = x * y + s
mac :: HiddenClockReset domain gated synchronous => Signal domain (Int, Int) -> Signal domain Int
mac = moore mac id 0
>>>simulate mac [(1,1),(2,2),(3,3),(4,4)][0,1,5,14... ...
Synchronous sequential functions can be composed just like their combinational counterpart:
dualMac :: HiddenClockReset domain gated synchronous => (Signaldomain Int,Signaldomain Int) -> (Signaldomain Int,Signaldomain Int) ->Signaldomain Int dualMac (a,b) (x,y) = s1 + s2 where s1 =mooremac id 0 (bundle(a,x)) s2 =mooremac id 0 (bundle(b,y))
Arguments
| :: (Bundle i, Bundle o, HiddenClockReset domain gated synchronous) | |
| => (s -> i -> s) | Transfer function in moore machine form:
|
| -> (s -> o) | Output function in moore machine form:
|
| -> s | Initial state |
| -> Unbundled domain i -> Unbundled domain o | Synchronous sequential function with input and output matching that of the moore machine |
A version of moore that does automatic Bundleing
Given a functions t and o of types:
t :: Int -> (Bool, Int) -> Int o :: Int -> (Int, Bool)
When we want to make compositions of t and o in g using moore, we have to
write:
g a b c = (b1,b2,i2)
where
(i1,b1) = unbundle (moore t o 0 (bundle (a,b)))
(i2,b2) = unbundle (moore t o 3 (bundle (i1,c)))
Using mooreB however we can write:
g a b c = (b1,b2,i2)
where
(i1,b1) = mooreB t o 0 (a,b)
(i2,b2) = mooreB t o 3 (i1,c)