| Copyright | (C) 2013-2016 University of Twente 2017 Myrtle Software Ltd |
|---|---|
| License | BSD2 (see the file LICENSE) |
| Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
| Extensions |
|
Clash.Sized.Vector
Description
Synopsis
- data Vec :: Nat -> Type -> Type where
- length :: KnownNat n => Vec n a -> Int
- lengthS :: KnownNat n => Vec n a -> SNat n
- (!!) :: (KnownNat n, Enum i) => Vec n a -> i -> a
- head :: Vec (n + 1) a -> a
- last :: Vec (n + 1) a -> a
- at :: SNat m -> Vec (m + (n + 1)) a -> a
- indices :: KnownNat n => SNat n -> Vec n (Index n)
- indicesI :: KnownNat n => Vec n (Index n)
- findIndex :: KnownNat n => (a -> Bool) -> Vec n a -> Maybe (Index n)
- elemIndex :: (KnownNat n, Eq a) => a -> Vec n a -> Maybe (Index n)
- tail :: Vec (n + 1) a -> Vec n a
- init :: Vec (n + 1) a -> Vec n a
- take :: SNat m -> Vec (m + n) a -> Vec m a
- takeI :: KnownNat m => Vec (m + n) a -> Vec m a
- drop :: SNat m -> Vec (m + n) a -> Vec n a
- dropI :: KnownNat m => Vec (m + n) a -> Vec n a
- select :: CmpNat (i + s) (s * n) ~ 'GT => SNat f -> SNat s -> SNat n -> Vec (f + i) a -> Vec n a
- selectI :: (CmpNat (i + s) (s * n) ~ 'GT, KnownNat n) => SNat f -> SNat s -> Vec (f + i) a -> Vec n a
- splitAt :: SNat m -> Vec (m + n) a -> (Vec m a, Vec n a)
- splitAtI :: KnownNat m => Vec (m + n) a -> (Vec m a, Vec n a)
- unconcat :: KnownNat n => SNat m -> Vec (n * m) a -> Vec n (Vec m a)
- unconcatI :: (KnownNat n, KnownNat m) => Vec (n * m) a -> Vec n (Vec m a)
- singleton :: a -> Vec 1 a
- replicate :: SNat n -> a -> Vec n a
- repeat :: KnownNat n => a -> Vec n a
- iterate :: SNat n -> (a -> a) -> a -> Vec n a
- iterateI :: KnownNat n => (a -> a) -> a -> Vec n a
- generate :: SNat n -> (a -> a) -> a -> Vec n a
- generateI :: KnownNat n => (a -> a) -> a -> Vec n a
- listToVecTH :: Lift a => [a] -> ExpQ
- (++) :: Vec n a -> Vec m a -> Vec (n + m) a
- (+>>) :: KnownNat n => a -> Vec n a -> Vec n a
- (<<+) :: Vec n a -> a -> Vec n a
- concat :: Vec n (Vec m a) -> Vec (n * m) a
- concatMap :: (a -> Vec m b) -> Vec n a -> Vec (n * m) b
- shiftInAt0 :: KnownNat n => Vec n a -> Vec m a -> (Vec n a, Vec m a)
- shiftInAtN :: KnownNat m => Vec n a -> Vec m a -> (Vec n a, Vec m a)
- shiftOutFrom0 :: (Default a, KnownNat m) => SNat m -> Vec (m + n) a -> (Vec (m + n) a, Vec m a)
- shiftOutFromN :: (Default a, KnownNat n) => SNat m -> Vec (m + n) a -> (Vec (m + n) a, Vec m a)
- merge :: KnownNat n => Vec n a -> Vec n a -> Vec (2 * n) a
- replace :: (KnownNat n, Enum i) => i -> a -> Vec n a -> Vec n a
- permute :: (Enum i, KnownNat n, KnownNat m) => (a -> a -> a) -> Vec n a -> Vec m i -> Vec (m + k) a -> Vec n a
- backpermute :: (Enum i, KnownNat n) => Vec n a -> Vec m i -> Vec m a
- scatter :: (Enum i, KnownNat n, KnownNat m) => Vec n a -> Vec m i -> Vec (m + k) a -> Vec n a
- gather :: (Enum i, KnownNat n) => Vec n a -> Vec m i -> Vec m a
- reverse :: Vec n a -> Vec n a
- transpose :: KnownNat n => Vec m (Vec n a) -> Vec n (Vec m a)
- interleave :: (KnownNat n, KnownNat d) => SNat d -> Vec (n * d) a -> Vec (d * n) a
- rotateLeft :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a
- rotateRight :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a
- rotateLeftS :: KnownNat n => Vec n a -> SNat d -> Vec n a
- rotateRightS :: KnownNat n => Vec n a -> SNat d -> Vec n a
- map :: (a -> b) -> Vec n a -> Vec n b
- imap :: forall n a b. KnownNat n => (Index n -> a -> b) -> Vec n a -> Vec n b
- smap :: forall k a b. KnownNat k => (forall l. SNat l -> a -> b) -> Vec k a -> Vec k b
- zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
- zipWith3 :: (a -> b -> c -> d) -> Vec n a -> Vec n b -> Vec n c -> Vec n d
- zipWith4 :: (a -> b -> c -> d -> e) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e
- zipWith5 :: (a -> b -> c -> d -> e -> f) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f
- zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g
- zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n h
- zip :: Vec n a -> Vec n b -> Vec n (a, b)
- zip3 :: Vec n a -> Vec n b -> Vec n c -> Vec n (a, b, c)
- zip4 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n (a, b, c, d)
- zip5 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n (a, b, c, d, e)
- zip6 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n (a, b, c, d, e, f)
- zip7 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n (a, b, c, d, e, f, g)
- izipWith :: KnownNat n => (Index n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
- unzip :: Vec n (a, b) -> (Vec n a, Vec n b)
- unzip3 :: Vec n (a, b, c) -> (Vec n a, Vec n b, Vec n c)
- unzip4 :: Vec n (a, b, c, d) -> (Vec n a, Vec n b, Vec n c, Vec n d)
- unzip5 :: Vec n (a, b, c, d, e) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e)
- unzip6 :: Vec n (a, b, c, d, e, f) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f)
- unzip7 :: Vec n (a, b, c, d, e, f, g) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f, Vec n g)
- foldr :: (a -> b -> b) -> b -> Vec n a -> b
- foldl :: (b -> a -> b) -> b -> Vec n a -> b
- foldr1 :: (a -> a -> a) -> Vec (n + 1) a -> a
- foldl1 :: (a -> a -> a) -> Vec (n + 1) a -> a
- fold :: (a -> a -> a) -> Vec (n + 1) a -> a
- ifoldr :: KnownNat n => (Index n -> a -> b -> b) -> b -> Vec n a -> b
- ifoldl :: KnownNat n => (a -> Index n -> b -> a) -> a -> Vec n b -> a
- dfold :: forall p k a. KnownNat k => Proxy (p :: TyFun Nat Type -> Type) -> (forall l. SNat l -> a -> (p @@ l) -> p @@ (l + 1)) -> (p @@ 0) -> Vec k a -> p @@ k
- dtfold :: forall p k a. KnownNat k => Proxy (p :: TyFun Nat Type -> Type) -> (a -> p @@ 0) -> (forall l. SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)) -> Vec (2 ^ k) a -> p @@ k
- vfold :: forall k a b. KnownNat k => (forall l. SNat l -> a -> Vec l b -> Vec (l + 1) b) -> Vec k a -> Vec k b
- scanl :: (b -> a -> b) -> b -> Vec n a -> Vec (n + 1) b
- scanr :: (a -> b -> b) -> b -> Vec n a -> Vec (n + 1) b
- postscanl :: (b -> a -> b) -> b -> Vec n a -> Vec n b
- postscanr :: (a -> b -> b) -> b -> Vec n a -> Vec n b
- mapAccumL :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y)
- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y)
- stencil1d :: KnownNat n => SNat (stX + 1) -> (Vec (stX + 1) a -> b) -> Vec ((stX + n) + 1) a -> Vec (n + 1) b
- stencil2d :: (KnownNat n, KnownNat m) => SNat (stY + 1) -> SNat (stX + 1) -> (Vec (stY + 1) (Vec (stX + 1) a) -> b) -> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) -> Vec (m + 1) (Vec (n + 1) b)
- windows1d :: KnownNat n => SNat (stX + 1) -> Vec ((stX + n) + 1) a -> Vec (n + 1) (Vec (stX + 1) a)
- windows2d :: (KnownNat n, KnownNat m) => SNat (stY + 1) -> SNat (stX + 1) -> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) -> Vec (m + 1) (Vec (n + 1) (Vec (stY + 1) (Vec (stX + 1) a)))
- toList :: Vec n a -> [a]
- bv2v :: KnownNat n => BitVector n -> Vec n Bit
- v2bv :: KnownNat n => Vec n Bit -> BitVector n
- lazyV :: KnownNat n => Vec n a -> Vec n a
- data VCons (a :: Type) (f :: TyFun Nat Type) :: Type
- asNatProxy :: Vec n a -> Proxy n
- seqV :: KnownNat n => Vec n a -> b -> b
- forceV :: KnownNat n => Vec n a -> Vec n a
- seqVX :: KnownNat n => Vec n a -> b -> b
- forceVX :: KnownNat n => Vec n a -> Vec n a
- traverse# :: forall a f b n. Applicative f => (a -> f b) -> Vec n a -> f (Vec n b)
- concatBitVector# :: (KnownNat n, KnownNat m) => Vec n (BitVector m) -> BitVector (n * m)
- unconcatBitVector# :: forall n m. (KnownNat n, KnownNat m) => BitVector (n * m) -> Vec n (BitVector m)
Vector data type
data Vec :: Nat -> Type -> Type where Source #
Fixed size vectors.
Bundled Patterns
| pattern (:>) :: a -> Vec n a -> Vec (n + 1) a infixr 5 | Add an element to the head of a vector.
Can be used as a pattern:
Also in conjunctions with (
|
| pattern (:<) :: Vec n a -> a -> Vec (n + 1) a infixl 5 | Add an element to the tail of a vector.
Can be used as a pattern:
Also in conjunctions with (
|
Instances
| Functor (Vec n) Source # | |
| KnownNat n => Applicative (Vec n) Source # | |
| (KnownNat n, 1 <= n) => Foldable (Vec n) Source # | |
Defined in Clash.Sized.Vector Methods fold :: Monoid m => Vec n m -> m # foldMap :: Monoid m => (a -> m) -> Vec n a -> m # foldMap' :: Monoid m => (a -> m) -> Vec n a -> m # foldr :: (a -> b -> b) -> b -> Vec n a -> b # foldr' :: (a -> b -> b) -> b -> Vec n a -> b # foldl :: (b -> a -> b) -> b -> Vec n a -> b # foldl' :: (b -> a -> b) -> b -> Vec n a -> b # foldr1 :: (a -> a -> a) -> Vec n a -> a # foldl1 :: (a -> a -> a) -> Vec n a -> a # elem :: Eq a => a -> Vec n a -> Bool # maximum :: Ord a => Vec n a -> a # minimum :: Ord a => Vec n a -> a # | |
| (KnownNat n, 1 <= n) => Traversable (Vec n) Source # | |
| (KnownNat n, Eq a) => Eq (Vec n a) Source # | |
| (KnownNat n, Typeable a, Data a) => Data (Vec n a) Source # | |
Defined in Clash.Sized.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vec n a -> c (Vec n a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vec n a) # toConstr :: Vec n a -> Constr # dataTypeOf :: Vec n a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vec n a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vec n a)) # gmapT :: (forall b. Data b => b -> b) -> Vec n a -> Vec n a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vec n a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vec n a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vec n a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vec n a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) # | |
| (KnownNat n, Ord a) => Ord (Vec n a) Source # | |
| Show a => Show (Vec n a) Source # | |
| KnownNat n => Generic (Vec n a) Source # | In many cases, this Generic instance only allows generic functions/instances over vectors of at least size 1, due to the n-1 in the Rep (Vec n a) definition. We'll have to wait for things like https://ryanglscott.github.io/2018/02/11/how-to-derive-generic-for-some-gadts/ before we can work around this limitation |
| Lift a => Lift (Vec n a) Source # | |
| (KnownNat n, Arbitrary a) => Arbitrary (Vec n a) Source # | |
| CoArbitrary a => CoArbitrary (Vec n a) Source # | |
Defined in Clash.Sized.Vector Methods coarbitrary :: Vec n a -> Gen b -> Gen b # | |
| (Default a, KnownNat n) => Default (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| NFData a => NFData (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| KnownNat n => Ixed (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| (NFDataX a, KnownNat n) => NFDataX (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| ShowX a => ShowX (Vec n a) Source # | |
| (KnownNat n, KnownNat (BitSize a), BitPack a) => BitPack (Vec n a) Source # | |
| KnownNat n => Bundle (Vec n a) Source # | |
| KnownNat n => Bundle (Vec n a) Source # | |
Defined in Clash.Signal.Delayed.Bundle | |
| (LockStep en a, KnownNat n) => LockStep (Vec n en) (Vec n a) Source # | |
| type Unbundled t d (Vec n a) Source # | |
Defined in Clash.Signal.Delayed.Bundle | |
| type Unbundled t (Vec n a) Source # | |
Defined in Clash.Signal.Bundle | |
| type HasDomain dom (Vec n a) Source # | |
Defined in Clash.Class.HasDomain.HasSpecificDomain | |
| type TryDomain t (Vec n a) Source # | |
Defined in Clash.Class.HasDomain.HasSingleDomain | |
| type Rep (Vec n a) Source # | |
Defined in Clash.Sized.Vector type Rep (Vec n a) = D1 ('MetaData "Vec" "Clash.Data.Vector" "clash-prelude" 'False) (C1 ('MetaCons "Nil" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Cons" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Vec (n - 1) a)))) | |
| type Index (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| type IxValue (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
| type BitSize (Vec n a) Source # | |
Defined in Clash.Sized.Vector | |
Accessors
Length information
Indexing
(!!) :: (KnownNat n, Enum i) => Vec n a -> i -> a Source #
"xs !! n" returns the n'th element of xs.
NB: vector elements have an ASCENDING subscript starting from 0 and
ending at .length - 1
>>>(1:>2:>3:>4:>5:>Nil) !! 45>>>(1:>2:>3:>4:>5:>Nil) !! (length (1:>2:>3:>4:>5:>Nil) - 1)5>>>(1:>2:>3:>4:>5:>Nil) !! 12>>>(1:>2:>3:>4:>5:>Nil) !! 14*** Exception: Clash.Sized.Vector.(!!): index 14 is larger than maximum index 4 ...
head :: Vec (n + 1) a -> a Source #
Extract the first element of a vector
>>>head (1:>2:>3:>Nil)1>>>head Nil<interactive>:... • Couldn't match type ‘1’ with ‘0’ Expected type: Vec (0 + 1) a Actual type: Vec 0 a • In the first argument of ‘head’, namely ‘Nil’ In the expression: head Nil In an equation for ‘it’: it = head Nil
last :: Vec (n + 1) a -> a Source #
Extract the last element of a vector
>>>last (1:>2:>3:>Nil)3>>>last Nil<interactive>:... • Couldn't match type ‘1’ with ‘0’ Expected type: Vec (0 + 1) a Actual type: Vec 0 a • In the first argument of ‘last’, namely ‘Nil’ In the expression: last Nil In an equation for ‘it’: it = last Nil
indices :: KnownNat n => SNat n -> Vec n (Index n) Source #
Generate a vector of indices.
>>>indices d4<0,1,2,3>
indicesI :: KnownNat n => Vec n (Index n) Source #
Generate a vector of indices, where the length of the vector is determined by the context.
>>>indicesI :: Vec 4 (Index 4)<0,1,2,3>
Extracting sub-vectors (slicing)
tail :: Vec (n + 1) a -> Vec n a Source #
Extract the elements after the head of a vector
>>>tail (1:>2:>3:>Nil)<2,3>>>>tail Nil<interactive>:... • Couldn't match type ‘1’ with ‘0’ Expected type: Vec (0 + 1) a Actual type: Vec 0 a • In the first argument of ‘tail’, namely ‘Nil’ In the expression: tail Nil In an equation for ‘it’: it = tail Nil
init :: Vec (n + 1) a -> Vec n a Source #
Extract all the elements of a vector except the last element
>>>init (1:>2:>3:>Nil)<1,2>>>>init Nil<interactive>:... • Couldn't match type ‘1’ with ‘0’ Expected type: Vec (0 + 1) a Actual type: Vec 0 a • In the first argument of ‘init’, namely ‘Nil’ In the expression: init Nil In an equation for ‘it’: it = init Nil
take :: SNat m -> Vec (m + n) a -> Vec m a Source #
"take n xs" returns the n-length prefix of xs.
>>>take (SNat :: SNat 3) (1:>2:>3:>4:>5:>Nil)<1,2,3>>>>take d3 (1:>2:>3:>4:>5:>Nil)<1,2,3>>>>take d0 (1:>2:>Nil)<>>>>take d4 (1:>2:>Nil)<interactive>:... • Couldn't match type ‘4 + n0’ with ‘2’ Expected type: Vec (4 + n0) a Actual type: Vec (1 + 1) a The type variable ‘n0’ is ambiguous • In the second argument of ‘take’, namely ‘(1 :> 2 :> Nil)’ In the expression: take d4 (1 :> 2 :> Nil) In an equation for ‘it’: it = take d4 (1 :> 2 :> Nil)
takeI :: KnownNat m => Vec (m + n) a -> Vec m a Source #
"takeI xs" returns the prefix of xs as demanded by the context.
>>>takeI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int<1,2>
drop :: SNat m -> Vec (m + n) a -> Vec n a Source #
"drop n xs" returns the suffix of xs after the first n elements.
>>>drop (SNat :: SNat 3) (1:>2:>3:>4:>5:>Nil)<4,5>>>>drop d3 (1:>2:>3:>4:>5:>Nil)<4,5>>>>drop d0 (1:>2:>Nil)<1,2>>>>drop d4 (1:>2:>Nil)<interactive>:...: error: • Couldn't match...type ‘4 + n0... The type variable ‘n0’ is ambiguous • In the first argument of ‘print’, namely ‘it’ In a stmt of an interactive GHCi command: print it
dropI :: KnownNat m => Vec (m + n) a -> Vec n a Source #
"dropI xs" returns the suffix of xs as demanded by the context.
>>>dropI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int<4,5>
select :: CmpNat (i + s) (s * n) ~ 'GT => SNat f -> SNat s -> SNat n -> Vec (f + i) a -> Vec n a Source #
"select f s n xs" selects n elements with step-size s and
offset f from xs.
>>>select (SNat :: SNat 1) (SNat :: SNat 2) (SNat :: SNat 3) (1:>2:>3:>4:>5:>6:>7:>8:>Nil)<2,4,6>>>>select d1 d2 d3 (1:>2:>3:>4:>5:>6:>7:>8:>Nil)<2,4,6>
selectI :: (CmpNat (i + s) (s * n) ~ 'GT, KnownNat n) => SNat f -> SNat s -> Vec (f + i) a -> Vec n a Source #
"selectI f s xs" selects as many elements as demanded by the context
with step-size s and offset f from xs.
>>>selectI d1 d2 (1:>2:>3:>4:>5:>6:>7:>8:>Nil) :: Vec 2 Int<2,4>
Splitting
splitAt :: SNat m -> Vec (m + n) a -> (Vec m a, Vec n a) Source #
Split a vector into two vectors at the given point.
>>>splitAt (SNat :: SNat 3) (1:>2:>3:>7:>8:>Nil)(<1,2,3>,<7,8>)>>>splitAt d3 (1:>2:>3:>7:>8:>Nil)(<1,2,3>,<7,8>)
splitAtI :: KnownNat m => Vec (m + n) a -> (Vec m a, Vec n a) Source #
Split a vector into two vectors where the length of the two is determined by the context.
>>>splitAtI (1:>2:>3:>7:>8:>Nil) :: (Vec 2 Int, Vec 3 Int)(<1,2>,<3,7,8>)
unconcat :: KnownNat n => SNat m -> Vec (n * m) a -> Vec n (Vec m a) Source #
Split a vector of (n * m) elements into a vector of "vectors of length m", where the length m is given.
>>>unconcat d4 (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil)<<1,2,3,4>,<5,6,7,8>,<9,10,11,12>>
unconcatI :: (KnownNat n, KnownNat m) => Vec (n * m) a -> Vec n (Vec m a) Source #
Split a vector of (n * m) elements into a vector of "vectors of length m", where the length m is determined by the context.
>>>unconcatI (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil) :: Vec 2 (Vec 6 Int)<<1,2,3,4,5,6>,<7,8,9,10,11,12>>
Construction
Initialisation
replicate :: SNat n -> a -> Vec n a Source #
"replicate n a" returns a vector that has n copies of a.
>>>replicate (SNat :: SNat 3) 6<6,6,6>>>>replicate d3 6<6,6,6>
repeat :: KnownNat n => a -> Vec n a Source #
"repeat a" creates a vector with as many copies of a as demanded
by the context.
>>>repeat 6 :: Vec 5 Int<6,6,6,6,6>
iterate :: SNat n -> (a -> a) -> a -> Vec n a Source #
"iterate n f x" returns a vector starting with x followed by
n repeated applications of f to x.
iterate (SNat :: SNat 4) f x == (x :> f x :> f (f x) :> f (f (f x)) :> Nil) iterate d4 f x == (x :> f x :> f (f x) :> f (f (f x)) :> Nil)
>>>iterate d4 (+1) 1<1,2,3,4>
"iterate n f z" corresponds to the following circuit layout:
generate :: SNat n -> (a -> a) -> a -> Vec n a Source #
"generate n f x" returns a vector with n repeated applications of
f to x.
generate (SNat :: SNat 4) f x == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil) generate d4 f x == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil)
>>>generate d4 (+1) 1<2,3,4,5>
"generate n f z" corresponds to the following circuit layout:
Initialisation from a list
listToVecTH :: Lift a => [a] -> ExpQ Source #
Create a vector literal from a list literal.
$(listToVecTH [1::Signed 8,2,3,4,5]) == (8:>2:>3:>4:>5:>Nil) :: Vec 5 (Signed 8)
>>>[1 :: Signed 8,2,3,4,5][1,2,3,4,5]>>>$(listToVecTH [1::Signed 8,2,3,4,5])<1,2,3,4,5>
Concatenation
(++) :: Vec n a -> Vec m a -> Vec (n + m) a infixr 5 Source #
Append two vectors.
>>>(1:>2:>3:>Nil) ++ (7:>8:>Nil)<1,2,3,7,8>
(+>>) :: KnownNat n => a -> Vec n a -> Vec n a infixr 4 Source #
Add an element to the head of a vector, and extract all but the last element.
>>>1 +>> (3:>4:>5:>Nil)<1,3,4>>>>1 +>> Nil<>
(<<+) :: Vec n a -> a -> Vec n a infixl 4 Source #
Add an element to the tail of a vector, and extract all but the first element.
>>>(3:>4:>5:>Nil) <<+ 1<4,5,1>>>>Nil <<+ 1<>
concat :: Vec n (Vec m a) -> Vec (n * m) a Source #
Concatenate a vector of vectors.
>>>concat ((1:>2:>3:>Nil) :> (4:>5:>6:>Nil) :> (7:>8:>9:>Nil) :> (10:>11:>12:>Nil) :> Nil)<1,2,3,4,5,6,7,8,9,10,11,12>
concatMap :: (a -> Vec m b) -> Vec n a -> Vec (n * m) b Source #
Map a function over all the elements of a vector and concatentate the resulting vectors.
>>>concatMap (replicate d3) (1:>2:>3:>Nil)<1,1,1,2,2,2,3,3,3>
Arguments
| :: KnownNat n | |
| => Vec n a | The old vector |
| -> Vec m a | The elements to shift in at the head |
| -> (Vec n a, Vec m a) | (The new vector, shifted out elements) |
Shift in elements to the head of a vector, bumping out elements at the tail. The result is a tuple containing:
- The new vector
- The shifted out elements
>>>shiftInAt0 (1 :> 2 :> 3 :> 4 :> Nil) ((-1) :> 0 :> Nil)(<-1,0,1,2>,<3,4>)>>>shiftInAt0 (1 :> Nil) ((-1) :> 0 :> Nil)(<-1>,<0,1>)
Arguments
| :: KnownNat m | |
| => Vec n a | The old vector |
| -> Vec m a | The elements to shift in at the tail |
| -> (Vec n a, Vec m a) | (The new vector, shifted out elements) |
Shift in element to the tail of a vector, bumping out elements at the head. The result is a tuple containing:
- The new vector
- The shifted out elements
>>>shiftInAtN (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> Nil)(<3,4,5,6>,<1,2>)>>>shiftInAtN (1 :> Nil) (2 :> 3 :> Nil)(<3>,<1,2>)
Arguments
| :: (Default a, KnownNat m) | |
| => SNat m |
|
| -> Vec (m + n) a | The old vector |
| -> (Vec (m + n) a, Vec m a) | (The new vector, shifted out elements) |
Shift m elements out from the head of a vector, filling up the tail with
Default values. The result is a tuple containing:
- The new vector
- The shifted out values
>>>shiftOutFrom0 d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer)(<3,4,5,0,0>,<1,2>)
Arguments
| :: (Default a, KnownNat n) | |
| => SNat m |
|
| -> Vec (m + n) a | The old vector |
| -> (Vec (m + n) a, Vec m a) | (The new vector, shifted out elements) |
Shift m elements out from the tail of a vector, filling up the head with
Default values. The result is a tuple containing:
- The new vector
- The shifted out values
>>>shiftOutFromN d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer)(<0,0,1,2,3>,<4,5>)
merge :: KnownNat n => Vec n a -> Vec n a -> Vec (2 * n) a Source #
Merge two vectors, alternating their elements, i.e.,
>>>merge (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> 7 :> 8 :> Nil)<1,5,2,6,3,7,4,8>
Modifying vectors
replace :: (KnownNat n, Enum i) => i -> a -> Vec n a -> Vec n a Source #
"replace n a xs" returns the vector xs where the n'th element is
replaced by a.
NB: vector elements have an ASCENDING subscript starting from 0 and
ending at .length - 1
>>>replace 3 7 (1:>2:>3:>4:>5:>Nil)<1,2,3,7,5>>>>replace 0 7 (1:>2:>3:>4:>5:>Nil)<7,2,3,4,5>>>>replace 9 7 (1:>2:>3:>4:>5:>Nil)<1,2,3,4,*** Exception: Clash.Sized.Vector.replace: index 9 is larger than maximum index 4 ...
Permutations
Arguments
| :: (Enum i, KnownNat n, KnownNat m) | |
| => (a -> a -> a) | Combination function, f |
| -> Vec n a | Default values, def |
| -> Vec m i | Index mapping, is |
| -> Vec (m + k) a | Vector to be permuted, xs |
| -> Vec n a |
Forward permutation specified by an index mapping, ix. The result vector is initialized by the given defaults, def, and an further values that are permuted into the result are added to the current value using the given combination function, f.
The combination function must be associative and commutative.
Backwards permutation specified by an index mapping, is, from the destination vector specifying which element of the source vector xs to read.
"backpermute xs is" is equivalent to "map (xs ".!!) is
For example:
>>>let input = 1:>9:>6:>4:>4:>2:>0:>1:>2:>Nil>>>let from = 1:>3:>7:>2:>5:>3:>Nil>>>backpermute input from<9,4,1,6,2,4>
Arguments
| :: (Enum i, KnownNat n, KnownNat m) | |
| => Vec n a | Default values, def |
| -> Vec m i | Index mapping, is |
| -> Vec (m + k) a | Vector to be scattered, xs |
| -> Vec n a |
Copy elements from the source vector, xs, to the destination vector according to an index mapping is. This is a forward permute operation where a to vector encodes an input to output index mapping. Output elements for indices that are not mapped assume the value in the default vector def.
For example:
>>>let defVec = 0:>0:>0:>0:>0:>0:>0:>0:>0:>Nil>>>let to = 1:>3:>7:>2:>5:>8:>Nil>>>let input = 1:>9:>6:>4:>4:>2:>5:>Nil>>>scatter defVec to input<0,1,4,9,0,4,0,6,2>
NB: If the same index appears in the index mapping more than once, the latest mapping is chosen.
Backwards permutation specified by an index mapping, is, from the destination vector specifying which element of the source vector xs to read.
"gather xs is" is equivalent to "map (xs ".!!) is
For example:
>>>let input = 1:>9:>6:>4:>4:>2:>0:>1:>2:>Nil>>>let from = 1:>3:>7:>2:>5:>3:>Nil>>>gather input from<9,4,1,6,2,4>
Specialised permutations
reverse :: Vec n a -> Vec n a Source #
The elements in a vector in reverse order.
>>>reverse (1:>2:>3:>4:>Nil)<4,3,2,1>
transpose :: KnownNat n => Vec m (Vec n a) -> Vec n (Vec m a) Source #
Transpose a matrix: go from row-major to column-major
>>>let xss = (1:>2:>Nil):>(3:>4:>Nil):>(5:>6:>Nil):>Nil>>>xss<<1,2>,<3,4>,<5,6>>>>>transpose xss<<1,3,5>,<2,4,6>>
"interleave d xs" creates a vector:
<x_0,x_d,x_(2d),...,x_1,x_(d+1),x_(2d+1),...,x_(d-1),x_(2d-1),x_(3d-1)>
>>>let xs = 1 :> 2 :> 3 :> 4 :> 5 :> 6 :> 7 :> 8 :> 9 :> Nil>>>interleave d3 xs<1,4,7,2,5,8,3,6,9>
rotateLeft :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a Source #
Dynamically rotate a Vector to the left:
>>>let xs = 1 :> 2 :> 3 :> 4 :> Nil>>>rotateLeft xs 1<2,3,4,1>>>>rotateLeft xs 2<3,4,1,2>>>>rotateLeft xs (-1)<4,1,2,3>
NB: use rotateLeftS if you want to rotate left by a static amount.
rotateRight :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a Source #
Dynamically rotate a Vector to the right:
>>>let xs = 1 :> 2 :> 3 :> 4 :> Nil>>>rotateRight xs 1<4,1,2,3>>>>rotateRight xs 2<3,4,1,2>>>>rotateRight xs (-1)<2,3,4,1>
NB: use rotateRightS if you want to rotate right by a static amount.
rotateLeftS :: KnownNat n => Vec n a -> SNat d -> Vec n a Source #
Statically rotate a Vector to the left:
>>>let xs = 1 :> 2 :> 3 :> 4 :> Nil>>>rotateLeftS xs d1<2,3,4,1>
NB: use rotateLeft if you want to rotate left by a dynamic amount.
rotateRightS :: KnownNat n => Vec n a -> SNat d -> Vec n a Source #
Statically rotate a Vector to the right:
>>>let xs = 1 :> 2 :> 3 :> 4 :> Nil>>>rotateRightS xs d1<4,1,2,3>
NB: use rotateRight if you want to rotate right by a dynamic amount.
Element-wise operations
Mapping
map :: (a -> b) -> Vec n a -> Vec n b Source #
"map f xs" is the vector obtained by applying f to each element
of xs, i.e.,
map f (x1 :> x2 :> ... :> xn :> Nil) == (f x1 :> f x2 :> ... :> f xn :> Nil)
and corresponds to the following circuit layout:
imap :: forall n a b. KnownNat n => (Index n -> a -> b) -> Vec n a -> Vec n b Source #
Apply a function of every element of a vector and its index.
>>>:t imap (+) (2 :> 2 :> 2 :> 2 :> Nil)imap (+) (2 :> 2 :> 2 :> 2 :> Nil) :: Vec 4 (Index 4)>>>imap (+) (2 :> 2 :> 2 :> 2 :> Nil)<2,3,*** Exception: X: Clash.Sized.Index: result 4 is out of bounds: [0..3] ...>>>imap (\i a -> fromIntegral i + a) (2 :> 2 :> 2 :> 2 :> Nil) :: Vec 4 (Unsigned 8)<2,3,4,5>
"imap f xs" corresponds to the following circuit layout:
smap :: forall k a b. KnownNat k => (forall l. SNat l -> a -> b) -> Vec k a -> Vec k b Source #
Apply a function to every element of a vector and the element's position
(as an SNat value) in the vector.
>>>let rotateMatrix = smap (flip rotateRightS)>>>let xss = (1:>2:>3:>Nil):>(1:>2:>3:>Nil):>(1:>2:>3:>Nil):>Nil>>>xss<<1,2,3>,<1,2,3>,<1,2,3>>>>>rotateMatrix xss<<1,2,3>,<3,1,2>,<2,3,1>>
Zipping
zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c Source #
zipWith generalizes zip by zipping with the function given
as the first argument, instead of a tupling function.
For example, "zipWith (+)" applied to two vectors produces the
vector of corresponding sums.
zipWith f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) == (f x1 y1 :> f x2 y2 :> ... :> f xn yn :> Nil)
"zipWith f xs ys" corresponds to the following circuit layout:
NB: zipWith is strict in its second argument, and lazy in its
third. This matters when zipWith is used in a recursive setting. See
lazyV for more information.
zipWith3 :: (a -> b -> c -> d) -> Vec n a -> Vec n b -> Vec n c -> Vec n d Source #
zipWith3 generalizes zip3 by zipping with the function given
as the first argument, instead of a tupling function.
zipWith3 f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) (z1 :> z2 :> ... :> zn :> Nil) == (f x1 y1 z1 :> f x2 y2 z2 :> ... :> f xn yn zn :> Nil)
"zipWith3 f xs ys zs" corresponds to the following circuit layout:
NB: zipWith3 is strict in its second argument, and lazy in its
third and fourth. This matters when zipWith3 is used in a recursive setting.
See lazyV for more information.
zipWith5 :: (a -> b -> c -> d -> e -> f) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f Source #
zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g Source #
zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n h Source #
zip :: Vec n a -> Vec n b -> Vec n (a, b) Source #
zip takes two vectors and returns a vector of corresponding pairs.
>>>zip (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil)<(1,4),(2,3),(3,2),(4,1)>
zip3 :: Vec n a -> Vec n b -> Vec n c -> Vec n (a, b, c) Source #
zip3 takes three vectors and returns a vector of corresponding triplets.
>>>zip3 (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil) (5:>6:>7:>8:>Nil)<(1,4,5),(2,3,6),(3,2,7),(4,1,8)>
zip6 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n (a, b, c, d, e, f) Source #
zip7 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n (a, b, c, d, e, f, g) Source #
izipWith :: KnownNat n => (Index n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c Source #
Zip two vectors with a functions that also takes the elements' indices.
>>>izipWith (\i a b -> i + a + b) (2 :> 2 :> Nil) (3 :> 3:> Nil)<*** Exception: X: Clash.Sized.Index: result 3 is out of bounds: [0..1] ...>>>izipWith (\i a b -> fromIntegral i + a + b) (2 :> 2 :> Nil) (3 :> 3 :> Nil) :: Vec 2 (Unsigned 8)<5,6>
"imap f xs" corresponds to the following circuit layout:
NB: izipWith is strict in its second argument, and lazy in its
third. This matters when izipWith is used in a recursive setting. See
lazyV for more information.
Unzipping
unzip :: Vec n (a, b) -> (Vec n a, Vec n b) Source #
unzip transforms a vector of pairs into a vector of first components
and a vector of second components.
>>>unzip ((1,4):>(2,3):>(3,2):>(4,1):>Nil)(<1,2,3,4>,<4,3,2,1>)
unzip3 :: Vec n (a, b, c) -> (Vec n a, Vec n b, Vec n c) Source #
unzip3 transforms a vector of triplets into a vector of first components,
a vector of second components, and a vector of third components.
>>>unzip3 ((1,4,5):>(2,3,6):>(3,2,7):>(4,1,8):>Nil)(<1,2,3,4>,<4,3,2,1>,<5,6,7,8>)
unzip6 :: Vec n (a, b, c, d, e, f) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f) Source #
unzip7 :: Vec n (a, b, c, d, e, f, g) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f, Vec n g) Source #
Folding
foldr :: (a -> b -> b) -> b -> Vec n a -> b Source #
foldr, applied to a binary operator, a starting value (typically
the right-identity of the operator), and a vector, reduces the vector
using the binary operator, from right to left:
foldr f z (x1 :> ... :> xn1 :> xn :> Nil) == x1 `f` (... (xn1 `f` (xn `f` z))...) foldr r z Nil == z
>>>foldr (/) 1 (5 :> 4 :> 3 :> 2 :> Nil)1.875
"foldr f z xs" corresponds to the following circuit layout:
NB: " produces a linear structure, which has a depth, or
delay, of O(foldr f z xs"). Use length xsfold if your binary operator f is
associative, as " produces a structure with a depth of
O(log_2(fold f xs")).length xs
foldl :: (b -> a -> b) -> b -> Vec n a -> b Source #
foldl, applied to a binary operator, a starting value (typically
the left-identity of the operator), and a vector, reduces the vector
using the binary operator, from left to right:
foldl f z (x1 :> x2 :> ... :> xn :> Nil) == (...((z `f` x1) `f` x2) `f`...) `f` xn foldl f z Nil == z
>>>foldl (/) 1 (5 :> 4 :> 3 :> 2 :> Nil)8.333333333333333e-3
"foldl f z xs" corresponds to the following circuit layout:
NB: " produces a linear structure, which has a depth, or
delay, of O(foldl f z xs"). Use length xsfold if your binary operator f is
associative, as " produces a structure with a depth of
O(log_2(fold f xs")).length xs
foldr1 :: (a -> a -> a) -> Vec (n + 1) a -> a Source #
foldr1 is a variant of foldr that has no starting value argument,
and thus must be applied to non-empty vectors.
foldr1 f (x1 :> ... :> xn2 :> xn1 :> xn :> Nil) == x1 `f` (... (xn2 `f` (xn1 `f` xn))...) foldr1 f (x1 :> Nil) == x1 foldr1 f Nil == TYPE ERROR
>>>foldr1 (/) (5 :> 4 :> 3 :> 2 :> 1 :> Nil)1.875
"foldr1 f xs" corresponds to the following circuit layout:
NB: " produces a linear structure, which has a depth,
or delay, of O(foldr1 f z xs"). Use length xsfold if your binary operator f is
associative, as " produces a structure with a depth of
O(log_2(fold f xs")).length xs
foldl1 :: (a -> a -> a) -> Vec (n + 1) a -> a Source #
foldl1 is a variant of foldl that has no starting value argument,
and thus must be applied to non-empty vectors.
foldl1 f (x1 :> x2 :> x3 :> ... :> xn :> Nil) == (...((x1 `f` x2) `f` x3) `f`...) `f` xn foldl1 f (x1 :> Nil) == x1 foldl1 f Nil == TYPE ERROR
>>>foldl1 (/) (1 :> 5 :> 4 :> 3 :> 2 :> Nil)8.333333333333333e-3
"foldl1 f xs" corresponds to the following circuit layout:
NB: " produces a linear structure, which has a depth,
or delay, of O(foldl1 f z xs"). Use length xsfold if your binary operator f is
associative, as " produces a structure with a depth of
O(log_2(fold f xs")).length xs
fold :: (a -> a -> a) -> Vec (n + 1) a -> a Source #
fold is a variant of foldr1 and foldl1, but instead of reducing from
right to left, or left to right, it reduces a vector using a tree-like
structure. The depth, or delay, of the structure produced by
"", is hence fold f xsO(log_2(, and not
length xs))O(.length xs)
NB: The binary operator "f" in "" must be associative.fold f xs
fold f (x1 :> x2 :> ... :> xn1 :> xn :> Nil) == ((x1 `f` x2) `f` ...) `f` (... `f` (xn1 `f` xn)) fold f (x1 :> Nil) == x1 fold f Nil == TYPE ERROR
>>>fold (+) (5 :> 4 :> 3 :> 2 :> 1 :> Nil)15
"fold f xs" corresponds to the following circuit layout:
ifoldr :: KnownNat n => (Index n -> a -> b -> b) -> b -> Vec n a -> b Source #
Right fold (function applied to each element and its index)
>>>let findLeftmost x xs = ifoldr (\i a b -> if a == x then Just i else b) Nothing xs>>>findLeftmost 3 (1:>3:>2:>4:>3:>5:>6:>Nil)Just 1>>>findLeftmost 8 (1:>3:>2:>4:>3:>5:>6:>Nil)Nothing
"ifoldr f z xs" corresponds to the following circuit layout:
ifoldl :: KnownNat n => (a -> Index n -> b -> a) -> a -> Vec n b -> a Source #
Left fold (function applied to each element and its index)
>>>let findRightmost x xs = ifoldl (\a i b -> if b == x then Just i else a) Nothing xs>>>findRightmost 3 (1:>3:>2:>4:>3:>5:>6:>Nil)Just 4>>>findRightmost 8 (1:>3:>2:>4:>3:>5:>6:>Nil)Nothing
"ifoldl f z xs" corresponds to the following circuit layout:
Specialised folds
Arguments
| :: forall p k a. KnownNat k | |
| => Proxy (p :: TyFun Nat Type -> Type) | The motive |
| -> (forall l. SNat l -> a -> (p @@ l) -> p @@ (l + 1)) | Function to fold. NB: The |
| -> (p @@ 0) | Initial element |
| -> Vec k a | Vector to fold over |
| -> p @@ k |
A dependently typed fold.
Using lists, we can define append (a.k.a. Data.List.++) in
terms of Data.List.foldr:
>>>import qualified Data.List>>>let append xs ys = Data.List.foldr (:) ys xs>>>append [1,2] [3,4][1,2,3,4]
However, when we try to do the same for Vec, by defining append' in terms
of Clash.Sized.Vector.foldr:
append' xs ys = foldr (:>) ys xs
we get a type error:
>>> let append' xs ys = foldr (:>) ys xs
<interactive>:...
• Occurs check: cannot construct the infinite type: ... ~ ... + 1
Expected type: a -> Vec ... a -> Vec ... a
Actual type: a -> Vec ... a -> Vec (... + 1) a
• In the first argument of ‘foldr’, namely ‘(:>)’
In the expression: foldr (:>) ys xs
In an equation for ‘append'’: append' xs ys = foldr (:>) ys xs
• Relevant bindings include
ys :: Vec ... a (bound at ...)
append' :: Vec n a -> Vec ... a -> Vec ... a
(bound at ...)
The reason is that the type of foldr is:
>>>:t foldrfoldr :: (a -> b -> b) -> b -> Vec n a -> b
While the type of (:>) is:
>>>:t (:>)(:>) :: a -> Vec n a -> Vec (n + 1) a
We thus need a fold function that can handle the growing vector type:
dfold. Compared to foldr, dfold takes an extra parameter, called the
motive, that allows the folded function to have an argument and result type
that depends on the current length of the vector. Using dfold, we can
now correctly define append':
import Data.Singletons.Prelude import Data.Proxy data Append (m :: Nat) (a :: *) (f ::TyFunNat *) :: * type instanceApply(Append m a) l =Vec(l + m) a append' xs ys =dfold(Proxy :: Proxy (Append m a)) (const (:>)) ys xs
We now see that append' has the appropriate type:
>>>:t append'append' :: KnownNat k => Vec k a -> Vec m a -> Vec (k + m) a
And that it works:
>>>append' (1 :> 2 :> Nil) (3 :> 4 :> Nil)<1,2,3,4>
NB: "" creates a linear structure, which has a depth,
or delay, of O(dfold m f z xs). Look at length xsdtfold for a dependently typed
fold that produces a structure with a depth of O(log_2()).length xs
Arguments
| :: forall p k a. KnownNat k | |
| => Proxy (p :: TyFun Nat Type -> Type) | The motive |
| -> (a -> p @@ 0) | Function to apply to every element |
| -> (forall l. SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)) | Function to combine results. NB: The |
| -> Vec (2 ^ k) a | Vector to fold over. NB: Must have a length that is a power of 2. |
| -> p @@ k |
A combination of dfold and fold: a dependently typed fold that
reduces a vector in a tree-like structure.
As an example of when you might want to use dtfold we will build a
population counter: a circuit that counts the number of bits set to '1' in
a BitVector. Given a vector of n bits, we only need we need a data type
that can represent the number n: Index (n+1). Index k has a range
of [0 .. k-1] (using ceil(log2(k)) bits), hence we need Index n+1.
As an initial attempt we will use sum, because it gives a nice (log2(n))
tree-structure of adders:
populationCount :: (KnownNat (n+1), KnownNat (n+2))
=> BitVector (n+1) -> Index (n+2)
populationCount = sum . map fromIntegral . bv2v
The "problem" with this description is that all adders have the same bit-width, i.e. all adders are of the type:
(+) ::Index(n+2) ->Index(n+2) ->Index(n+2).
This is a "problem" because we could have a more efficient structure: one where each layer of adders is precisely wide enough to count the number of bits at that layer. That is, at height d we want the adder to be of type:
Index((2^d)+1) ->Index((2^d)+1) ->Index((2^(d+1))+1)
We have such an adder in the form of the add function, as
defined in the instance ExtendingNum instance of Index.
However, we cannot simply use fold to create a tree-structure of
addes:
>>>:{let populationCount' :: (KnownNat (n+1), KnownNat (n+2)) => BitVector (n+1) -> Index (n+2) populationCount' = fold add . map fromIntegral . bv2v :} <interactive>:... • Couldn't match type ‘((n + 2) + (n + 2)) - 1’ with ‘n + 2’ Expected type: Index (n + 2) -> Index (n + 2) -> Index (n + 2) Actual type: Index (n + 2) -> Index (n + 2) -> AResult (Index (n + 2)) (Index (n + 2)) • In the first argument of ‘fold’, namely ‘add’ In the first argument of ‘(.)’, namely ‘fold add’ In the expression: fold add . map fromIntegral . bv2v • Relevant bindings include populationCount' :: BitVector (n + 1) -> Index (n + 2) (bound at ...)
because fold expects a function of type "a -> a -> a", i.e. a function
where the arguments and result all have exactly the same type.
In order to accommodate the type of our add, where the
result is larger than the arguments, we must use a dependently typed fold in
the form of dtfold:
{-# LANGUAGE UndecidableInstances #-}
import Data.Singletons.Prelude
import Data.Proxy
data IIndex (f :: TyFun Nat *) :: *
type instance Apply IIndex l = Index ((2^l)+1)
populationCount' :: (KnownNat k, KnownNat (2^k))
=> BitVector (2^k) -> Index ((2^k)+1)
populationCount' bv = dtfold (Proxy @IIndex)
fromIntegral
(\_ x y -> add x y)
(bv2v bv)
And we can test that it works:
>>>:t populationCount' (7 :: BitVector 16)populationCount' (7 :: BitVector 16) :: Index 17>>>populationCount' (7 :: BitVector 16)3
Some final remarks:
- By using
dtfoldinstead offold, we had to restrict ourBitVectorargument to have bit-width that is a power of 2. - Even though our original populationCount function specified a structure where all adders had the same width. Most VHDL/(System)Verilog synthesis tools will create a more efficient circuit, i.e. one where the adders have an increasing bit-width for every layer, from the VHDL/(System)Verilog produced by the Clash compiler.
NB: The depth, or delay, of the structure produced by
"" is O(log_2(dtfold m f g xs)).length xs
vfold :: forall k a b. KnownNat k => (forall l. SNat l -> a -> Vec l b -> Vec (l + 1) b) -> Vec k a -> Vec k b Source #
Specialised version of dfold that builds a triangular computational
structure.
Example:
compareSwap a b = if a > b then (a,b) else (b,a) insert y xs = let (y',xs') =mapAccumLcompareSwap y xs in xs':<y' insertionSort =vfold(const insert)
Builds a triangular structure of compare and swaps to sort a row.
>>>insertionSort (7 :> 3 :> 9 :> 1 :> Nil)<1,3,7,9>
The circuit layout of insertionSort, build using vfold, is:
Prefix sums (scans)
scanl :: (b -> a -> b) -> b -> Vec n a -> Vec (n + 1) b Source #
scanl is similar to foldl, but returns a vector of successive reduced
values from the left:
scanl f z (x1 :> x2 :> ... :> Nil) == z :> (z `f` x1) :> ((z `f` x1) `f` x2) :> ... :> Nil
>>>scanl (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)<0,5,9,12,14>
"scanl f z xs" corresponds to the following circuit layout:
NB:
last (scanl f z xs) == foldl f z xs
scanr :: (a -> b -> b) -> b -> Vec n a -> Vec (n + 1) b Source #
scanr is similar to foldr, but returns a vector of successive reduced
values from the right:
scanr f z (... :> xn1 :> xn :> Nil) == ... :> (xn1 `f` (xn `f` z)) :> (xn `f` z) :> z :> Nil
>>>scanr (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)<14,9,5,2,0>
"scanr f z xs" corresponds to the following circuit layout:
NB:
head (scanr f z xs) == foldr f z xs
mapAccumL :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y) Source #
The mapAccumL function behaves like a combination of map and foldl;
it applies a function to each element of a vector, passing an accumulating
parameter from left to right, and returning a final value of this accumulator
together with the new vector.
>>>mapAccumL (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil)(10,<1,2,4,7>)
"mapAccumL f acc xs" corresponds to the following circuit layout:
mapAccumR :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y) Source #
The mapAccumR function behaves like a combination of map and foldr;
it applies a function to each element of a vector, passing an accumulating
parameter from right to left, and returning a final value of this accumulator
together with the new vector.
>>>mapAccumR (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil)(10,<10,8,5,1>)
"mapAccumR f acc xs" corresponds to the following circuit layout:
Stencil computations
Arguments
| :: KnownNat n | |
| => SNat (stX + 1) | Windows length stX, at least size 1 |
| -> (Vec (stX + 1) a -> b) | The stencil (function) |
| -> Vec ((stX + n) + 1) a | |
| -> Vec (n + 1) b |
1-dimensional stencil computations
"stencil1d stX f xs", where xs has stX + n elements, applies the
stencil computation f on: n + 1 overlapping (1D) windows of length stX,
drawn from xs. The resulting vector has n + 1 elements.
>>>let xs = (1:>2:>3:>4:>5:>6:>Nil)>>>:t xsxs :: Num a => Vec 6 a>>>:t stencil1d d2 sum xsstencil1d d2 sum xs :: Num b => Vec 5 b>>>stencil1d d2 sum xs<3,5,7,9,11>
Arguments
| :: (KnownNat n, KnownNat m) | |
| => SNat (stY + 1) | Window hight stY, at least size 1 |
| -> SNat (stX + 1) | Window width stX, at least size 1 |
| -> (Vec (stY + 1) (Vec (stX + 1) a) -> b) | The stencil (function) |
| -> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) | |
| -> Vec (m + 1) (Vec (n + 1) b) |
2-dimensional stencil computations
"stencil2d stY stX f xss", where xss is a matrix of stY + m rows
of stX + n elements, applies the stencil computation f on:
(m + 1) * (n + 1) overlapping (2D) windows of stY rows of stX elements,
drawn from xss. The result matrix has m + 1 rows of n + 1 elements.
>>>let xss = ((1:>2:>3:>4:>Nil):>(5:>6:>7:>8:>Nil):>(9:>10:>11:>12:>Nil):>(13:>14:>15:>16:>Nil):>Nil)>>>:t xssxss :: Num a => Vec 4 (Vec 4 a)>>>:t stencil2d d2 d2 (sum . map sum) xssstencil2d d2 d2 (sum . map sum) xss :: Num b => Vec 3 (Vec 3 b)>>>stencil2d d2 d2 (sum . map sum) xss<<14,18,22>,<30,34,38>,<46,50,54>>
Arguments
| :: KnownNat n | |
| => SNat (stX + 1) | Length of the window, at least size 1 |
| -> Vec ((stX + n) + 1) a | |
| -> Vec (n + 1) (Vec (stX + 1) a) |
"windows1d stX xs", where the vector xs has stX + n elements,
returns a vector of n + 1 overlapping (1D) windows of xs of length stX.
>>>let xs = (1:>2:>3:>4:>5:>6:>Nil)>>>:t xsxs :: Num a => Vec 6 a>>>:t windows1d d2 xswindows1d d2 xs :: Num a => Vec 5 (Vec 2 a)>>>windows1d d2 xs<<1,2>,<2,3>,<3,4>,<4,5>,<5,6>>
Arguments
| :: (KnownNat n, KnownNat m) | |
| => SNat (stY + 1) | Window hight stY, at least size 1 |
| -> SNat (stX + 1) | Window width stX, at least size 1 |
| -> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) | |
| -> Vec (m + 1) (Vec (n + 1) (Vec (stY + 1) (Vec (stX + 1) a))) |
"windows2d stY stX xss", where matrix xss has stY + m rows of
stX + n, returns a matrix of m+1 rows of n+1 elements. The elements
of this new matrix are the overlapping (2D) windows of xss, where every
window has stY rows of stX elements.
>>>let xss = ((1:>2:>3:>4:>Nil):>(5:>6:>7:>8:>Nil):>(9:>10:>11:>12:>Nil):>(13:>14:>15:>16:>Nil):>Nil)>>>:t xssxss :: Num a => Vec 4 (Vec 4 a)>>>:t windows2d d2 d2 xsswindows2d d2 d2 xss :: Num a => Vec 3 (Vec 3 (Vec 2 (Vec 2 a)))>>>windows2d d2 d2 xss<<<<1,2>,<5,6>>,<<2,3>,<6,7>>,<<3,4>,<7,8>>>,<<<5,6>,<9,10>>,<<6,7>,<10,11>>,<<7,8>,<11,12>>>,<<<9,10>,<13,14>>,<<10,11>,<14,15>>,<<11,12>,<15,16>>>>
Conversions
Misc
lazyV :: KnownNat n => Vec n a -> Vec n a Source #
What you should use when your vector functions are too strict in their arguments.
For example:
-- Bubble sort for 1 iteration sortV xs =mapfst sorted:<(snd (lastsorted)) where lefts =headxs :>mapsnd (initsorted) rights =tailxs sorted =zipWithcompareSwapL lefts rights -- Compare and swap compareSwapL a b = if a < b then (a,b) else (b,a)
Will not terminate because zipWith is too strict in its second argument.
In this case, adding lazyV on zipWiths second argument:
sortVL xs =mapfst sorted:<(snd (lastsorted)) where lefts =headxs :> map snd (initsorted) rights =tailxs sorted =zipWithcompareSwapL (lazyVlefts) rights
Results in a successful computation:
>>>sortVL (4 :> 1 :> 2 :> 3 :> Nil)<1,2,3,4>
NB: There is also a solution using flip, but it slightly obfuscates the
meaning of the code:
sortV_flip xs =mapfst sorted:<(snd (lastsorted)) where lefts =headxs :>mapsnd (initsorted) rights =tailxs sorted =zipWith(flipcompareSwapL) rights lefts
>>>sortV_flip (4 :> 1 :> 2 :> 3 :> Nil)<1,2,3,4>
data VCons (a :: Type) (f :: TyFun Nat Type) :: Type Source #
seqV :: KnownNat n => Vec n a -> b -> b infixr 0 Source #
Evaluate all elements of a vector to WHNF, returning the second argument
seqVX :: KnownNat n => Vec n a -> b -> b infixr 0 Source #
Evaluate all elements of a vector to WHNF, returning the second argument.
Does not propagate XExceptions.
forceVX :: KnownNat n => Vec n a -> Vec n a Source #
Evaluate all elements of a vector to WHNF. Does not propagate XExceptions.