| Safe Haskell | Safe-Infered |
|---|
ClassyPrelude
Contents
- ($) :: (a -> b) -> a -> b
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- (*) :: Num a => a -> a -> a
- (/) :: Fractional a => a -> a -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- (.) :: (b -> c) -> (a -> b) -> a -> c
- not :: Bool -> Bool
- otherwise :: Bool
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- id :: a -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- flip :: (a -> b -> c) -> b -> a -> c
- const :: a -> b -> a
- error :: [Char] -> a
- zip :: [a] -> [b] -> [(a, b)]
- unzip :: [(a, b)] -> ([a], [b])
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- or :: [Bool] -> Bool
- putStrLn :: Text -> IO ()
- elem :: Eq a => a -> [a] -> Bool
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- uncurry :: (a -> b -> c) -> (a, b) -> c
- class Eq a => Ord a where
- class Eq a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Show a
- class Functor f where
- class Monad m where
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- data Maybe a
- data Ordering
- data Bool
- data Char
- data IO a
- data Either a b
- class (Real a, Enum a) => Integral a where
- data ByteString
- type LByteString = ByteString
- data Text
- type LText = Text
- data Map k a
- data HashMap k v
- type LHashMap = HashMap
- data Set a
- data HashSet a
- data Vector a
- data Word8
- data Word64
- data Int64
- data Int
- data Word
- class Monoid a where
- concat :: Monoid w => [w] -> w
- (++) :: Monoid w => w -> w -> w
- first :: Arrow a => forall b c d. a b c -> a (b, d) (c, d)
- second :: Arrow a => forall b c d. a b c -> a (d, b) (d, c)
- (***) :: Arrow a => forall b c b' c'. a b c -> a b' c' -> a (b, b') (c, c')
- (&&&) :: Arrow a => forall b c c'. a b c -> a b c' -> a b (c, c')
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- catMaybes :: [Maybe a] -> [a]
- fromMaybe :: a -> Maybe a -> a
- partitionEithers :: [Either a b] -> ([a], [b])
- class Functor f => Applicative f where
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- lift :: MonadTrans t => forall m a. Monad m => m a -> t m a
- class Monad m => MonadIO m where
- liftIO :: MonadIO m => forall a. IO a -> m a
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- data SomeException
- throwIO :: Exception e => e -> IO a
- data FilePath
- (</>) :: FilePath -> FilePath -> FilePath
- (<.>) :: FilePath -> Text -> FilePath
- hasExtension :: FilePath -> Text -> Bool
- basename :: FilePath -> FilePath
- filename :: FilePath -> FilePath
- map :: CanMap f i o => (i -> o) -> f
- concatMap :: CanConcatMap f i o => (i -> o) -> f
- filter :: CanFilter f a => (a -> Bool) -> f
- length :: CanLength c i => c -> i
- singleton :: CanSingleton c i => i -> c
- null :: CanNull c => c -> Bool
- pack :: CanPack c i => [i] -> c
- unpack :: CanPack c i => c -> [i]
- fromList :: CanPack c i => [i] -> c
- toList :: CanPack c i => c -> [i]
- mapM :: CanMapM f i o m => (i -> m o) -> f
- mapM_ :: CanMapM_ f i o m => (i -> m o) -> f
- empty :: CanEmpty c => c
- stripPrefix :: CanStripPrefix a => a -> a -> Maybe a
- break :: CanBreak c i => (i -> Bool) -> c -> (c, c)
- span :: CanBreak c i => (i -> Bool) -> c -> (c, c)
- dropWhile :: CanBreak c i => (i -> Bool) -> c -> c
- takeWhile :: CanBreak c i => (i -> Bool) -> c -> c
- any :: CanAny c i => (i -> Bool) -> c -> Bool
- all :: CanAny c i => (i -> Bool) -> c -> Bool
- splitAt :: CanSplitAt c i => i -> c -> (c, c)
- fold :: CanFold accum a f => (accum -> a -> accum) -> accum -> f
- lookup :: CanLookup c k v => k -> c -> Maybe v
- insert :: CanInsert f => f
- delete :: CanDelete c k => k -> c -> c
- member :: CanMember c k => k -> c -> Bool
- show :: (Show a, CanPack c Char) => a -> c
- readFile :: CanReadFile a => FilePath -> a
- writeFile :: CanWriteFile a => FilePath -> a
- print :: Show a => a -> IO ()
Standard
Operators
($) :: (a -> b) -> a -> b
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.
zipWith ($) fs xs
(/) :: Fractional a => a -> a -> a
fractional division
(.) :: (b -> c) -> (a -> b) -> a -> c
Function composition.
Functions
fst :: (a, b) -> a
Extract the first component of a pair.
snd :: (a, b) -> b
Extract the second component of a pair.
id :: a -> a
Identity function.
flip :: (a -> b -> c) -> b -> a -> c
takes its (first) two arguments in the reverse order of flip ff.
const :: a -> b -> a
Constant function.
zip :: [a] -> [b] -> [(a, b)]
zip takes two lists and returns a list of corresponding pairs.
If one input list is short, excess elements of the longer list are
discarded.
unzip :: [(a, b)] -> ([a], [b])
unzip transforms a list of pairs into a list of first components
and a list of second components.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
Type classes
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined
datatype whose constituent types are in Ord. The declared order
of the constructors in the data declaration determines the ordering
in derived Ord instances. The Ordering datatype allows a single
comparison to determine the precise ordering of two objects.
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Instances
| Ord Bool | |
| Ord Char | |
| Ord Double | |
| Ord Float | |
| Ord Int | |
| Ord Int8 | |
| Ord Int16 | |
| Ord Int32 | |
| Ord Int64 | |
| Ord Ordering | |
| Ord Word | |
| Ord Word8 | |
| Ord Word16 | |
| Ord Word32 | |
| Ord Word64 | |
| Ord () | |
| Ord All | |
| Ord Any | |
| Ord ArithException | |
| Ord TypeRep | |
| Ord TyCon | |
| Ord ByteString | |
| Ord ByteString | |
| Ord Arity | |
| Ord Fixity | |
| Ord Associativity | |
| Ord Text | |
| Ord Root | |
| Ord FilePath | |
| Ord Text | |
| Ord a => Ord [a] | |
| Integral a => Ord (Ratio a) | |
| Ord a => Ord (Dual a) | |
| Ord a => Ord (Sum a) | |
| Ord a => Ord (Product a) | |
| Ord a => Ord (First a) | |
| Ord a => Ord (Last a) | |
| Ord a => Ord (Maybe a) | |
| Ord a => Ord (Set a) | |
| Ord a => Ord (Vector a) | |
| (Ord a, Ord b) => Ord (Either a b) | |
| (Ord a, Ord b) => Ord (a, b) | |
| (Ord k, Ord v) => Ord (Map k v) | |
| Ord a => Ord (Stream Id a) | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Eq a where
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
Instances
| Eq Bool | |
| Eq Char | |
| Eq Double | |
| Eq Float | |
| Eq Int | |
| Eq Int8 | |
| Eq Int16 | |
| Eq Int32 | |
| Eq Int64 | |
| Eq Ordering | |
| Eq Word | |
| Eq Word8 | |
| Eq Word16 | |
| Eq Word32 | |
| Eq Word64 | |
| Eq () | |
| Eq All | |
| Eq Any | |
| Eq MaskingState | |
| Eq ArithException | |
| Eq TypeRep | |
| Eq TyCon | |
| Eq ByteString | |
| Eq ByteString | |
| Eq Arity | |
| Eq Fixity | |
| Eq Associativity | |
| Eq Text | |
| Eq Root | |
| Eq FilePath | |
| Eq Text | |
| Eq a => Eq [a] | |
| Eq a => Eq (Ratio a) | |
| Eq a => Eq (Dual a) | |
| Eq a => Eq (Sum a) | |
| Eq a => Eq (Product a) | |
| Eq a => Eq (First a) | |
| Eq a => Eq (Last a) | |
| Eq a => Eq (Maybe a) | |
| Eq a => Eq (Set a) | |
| (Hashable a, Eq a) => Eq (HashSet a) | |
| Eq a => Eq (Vector a) | |
| (Eq a, Eq b) => Eq (Either a b) | |
| (Eq a, Eq b) => Eq (a, b) | |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Eq k, Eq v) => Eq (HashMap k v) | |
| Eq a => Eq (Stream Id a) | |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Enum a where
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound -
fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::Bool -
enumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBound
Methods
succ :: a -> a
the successor of a value. For numeric types, succ adds 1.
pred :: a -> a
the predecessor of a value. For numeric types, pred subtracts 1.
Convert from an Int.
Convert to an Int.
It is implementation-dependent what fromEnum returns when
applied to a value that is too large to fit in an Int.
enumFrom :: a -> [a]
Used in Haskell's translation of [n..].
enumFromThen :: a -> a -> [a]
Used in Haskell's translation of [n,n'..].
enumFromTo :: a -> a -> [a]
Used in Haskell's translation of [n..m].
enumFromThenTo :: a -> a -> a -> [a]
Used in Haskell's translation of [n,n'..m].
class Show a
Conversion of values to readable Strings.
Minimal complete definition: showsPrec or show.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5
Note that right-associativity of :^: is ignored. For example,
-
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Instances
| Show Bool | |
| Show Char | |
| Show Double | |
| Show Float | |
| Show Int | |
| Show Int8 | |
| Show Int16 | |
| Show Int32 | |
| Show Int64 | |
| Show Integer | |
| Show Ordering | |
| Show Word | |
| Show Word8 | |
| Show Word16 | |
| Show Word32 | |
| Show Word64 | |
| Show () | |
| Show All | |
| Show Any | |
| Show MaskingState | |
| Show SomeException | |
| Show ErrorCall | |
| Show ArithException | |
| Show TypeRep | |
| Show TyCon | |
| Show ByteString | |
| Show ByteString | |
| Show Arity | |
| Show Fixity | |
| Show Associativity | |
| Show Text | |
| Show FilePath | |
| Show Text | |
| Show a => Show [a] | |
| (Integral a, Show a) => Show (Ratio a) | |
| Show a => Show (Dual a) | |
| Show a => Show (Sum a) | |
| Show a => Show (Product a) | |
| Show a => Show (First a) | |
| Show a => Show (Last a) | |
| Show a => Show (Maybe a) | |
| Show a => Show (Set a) | |
| Show (Rules a) | |
| Show a => Show (HashSet a) | |
| Show a => Show (Vector a) | |
| (Show a, Show b) => Show (Either a b) | |
| (Show a, Show b) => Show (a, b) | |
| (Show k, Show a) => Show (Map k a) | |
| (Show k, Show v) => Show (HashMap k v) | |
| (Show a, Show b, Show c) => Show (a, b, c) | |
| (Show a, Show b, Show c, Show d) => Show (a, b, c, d) | |
| (Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) | |
| (Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Functor f where
The Functor class is used for types that can be mapped over.
Instances of Functor should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor for lists, Maybe and IO
satisfy these laws.
class Monad m where
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Minimal complete definition: >>= and return.
Instances of Monad should satisfy the following laws:
return a >>= k == k a m >>= return == m m >>= (\x -> k x >>= h) == (m >>= k) >>= h
Instances of both Monad and Functor should additionally satisfy the law:
fmap f xs == xs >>= return . f
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Methods
(>>=) :: m a -> (a -> m b) -> m b
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
return :: a -> m a
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do expression.
Data types
data Maybe a
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| Monad Maybe | |
| Functor Maybe | |
| Typeable1 Maybe | |
| MonadPlus Maybe | |
| Applicative Maybe | |
| Alternative Maybe | |
| Eq a => Eq (Maybe a) | |
| Ord a => Ord (Maybe a) | |
| Show a => Show (Maybe a) | |
| Generic (Maybe a) | |
| Monoid a => Monoid (Maybe a) | Lift a semigroup into |
| Hashable a => Hashable (Maybe a) | |
| CanPack (Maybe a) a |
data Ordering
data Bool
data Char
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) characters (see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and chr).
Instances
data IO a
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad class.
data Either a b
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.
Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
class (Real a, Enum a) => Integral a where
Methods
quot :: a -> a -> a
integer division truncated toward zero
rem :: a -> a -> a
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
div :: a -> a -> a
integer division truncated toward negative infinity
mod :: a -> a -> a
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
quotRem :: a -> a -> (a, a)
divMod :: a -> a -> (a, a)
conversion to Integer
Re-exports
Packed reps
data ByteString
A space-efficient representation of a Word8 vector, supporting many
efficient operations. A ByteString contains 8-bit characters only.
Instances of Eq, Ord, Read, Show, Data, Typeable
Instances
| Eq ByteString | |
| Data ByteString | |
| Ord ByteString | |
| Read ByteString | |
| Show ByteString | |
| Typeable ByteString | |
| IsString ByteString | |
| Monoid ByteString | |
| Hashable ByteString | |
| CanWriteFileFunc ByteString | |
| CanEmpty ByteString | |
| CanNull ByteString | |
| CanSplitAt ByteString Int | |
| CanAny ByteString Word8 | |
| CanBreak ByteString Word8 | |
| CanPack ByteString Word8 | |
| CanSingleton ByteString Word8 | |
| CanLength ByteString Int | |
| CanFilterFunc ByteString Word8 | |
| (~ * co ByteString, ~ * i Word8, ~ * o ByteString) => CanConcatMapFunc ByteString co i o | |
| (~ * co ByteString, ~ * i Word8, ~ * o Word8) => CanMapFunc ByteString co i o | |
| MonadIO m => CanReadFile (m ByteString) |
type LByteString = ByteStringSource
data Text
A space efficient, packed, unboxed Unicode text type.
Instances
| Eq Text | |
| Data Text | |
| Ord Text | |
| Read Text | |
| Show Text | |
| Typeable Text | |
| IsString Text | |
| Monoid Text | |
| NFData Text | |
| Hashable Text | |
| CanStripPrefix Text | |
| CanEmpty Text | |
| CanNull Text | |
| CanSplitAt Text Int | |
| CanAny Text Char | |
| CanBreak Text Char | |
| CanPack Text Char | |
| CanSingleton Text Char | |
| CanLength Text Int | |
| CanFilterFunc Text Char | |
| (~ * co Text, ~ * i Char, ~ * o Text) => CanConcatMapFunc Text co i o | |
| (~ * co Text, ~ * i Char, ~ * o Char) => CanMapFunc Text co i o |
Containers
data Map k a
A Map from keys k to values a.
Instances
| Typeable2 Map | |
| Functor (Map k) | |
| Foldable (Map k) | |
| Traversable (Map k) | |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Data k, Data a, Ord k) => Data (Map k a) | |
| (Ord k, Ord v) => Ord (Map k v) | |
| (Ord k, Read k, Read e) => Read (Map k e) | |
| (Show k, Show a) => Show (Map k a) | |
| Ord k => Monoid (Map k v) | |
| (NFData k, NFData a) => NFData (Map k a) | |
| CanEmpty (Map k v) | |
| CanNull (Map k v) | |
| Ord k => CanDelete (Map k v) k | |
| ~ * v' v => CanSingleton (v' -> Map k v) k | |
| CanLength (Map k v) Int | |
| Ord k => CanInsertVal (Map k v) k v | |
| Ord k => CanLookup (Map k v) k v | |
| Ord k => CanPack (Map k v) (k, v) | |
| Ord k => CanFilterFunc (Map k v) (k, v) | |
| CanMapFunc (Map k v1) (Map k v2) v1 v2 |
data HashMap k v
A map from keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
Instances
| Typeable2 HashMap | |
| Functor (HashMap k) | |
| Foldable (HashMap k) | |
| Traversable (HashMap k) | |
| (Eq k, Eq v) => Eq (HashMap k v) | |
| (Show k, Show v) => Show (HashMap k v) | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | |
| (NFData k, NFData v) => NFData (HashMap k v) | |
| CanEmpty (Map k v) | |
| CanEmpty (Map k v) | |
| CanNull (Map k v) | |
| CanNull (Map k v) | |
| (Eq k, Hashable k) => CanDelete (Map k v) k | |
| (Eq k, Hashable k) => CanDelete (Map k v) k | |
| (Eq k, Hashable k, ~ * v' v) => CanSingleton (v' -> Map k v) k | |
| (Eq k, Hashable k, ~ * v' v) => CanSingleton (v' -> Map k v) k | |
| CanLength (Map k v) Int | |
| CanLength (Map k v) Int | |
| (Eq k, Hashable k) => CanInsertVal (Map k v) k v | |
| (Eq k, Hashable k) => CanInsertVal (Map k v) k v | |
| (Eq k, Hashable k) => CanLookup (Map k v) k v | |
| (Eq k, Hashable k) => CanLookup (Map k v) k v | |
| (Eq k, Hashable k) => CanPack (Map k v) (k, v) | |
| (Eq k, Hashable k) => CanPack (Map k v) (k, v) | |
| Hashable k => CanFilterFunc (Map k v) (k, v) | |
| Hashable k => CanFilterFunc (Map k v) (k, v) | |
| CanMapFunc (Map k v1) (Map k v2) v1 v2 | |
| CanMapFunc (Map k v1) (Map k v2) v1 v2 |
data Set a
A set of values a.
Instances
| Typeable1 Set | |
| Foldable Set | |
| Eq a => Eq (Set a) | |
| (Data a, Ord a) => Data (Set a) | |
| Ord a => Ord (Set a) | |
| (Read a, Ord a) => Read (Set a) | |
| Show a => Show (Set a) | |
| Ord a => Monoid (Set a) | |
| NFData a => NFData (Set a) | |
| CanEmpty (Set x) | |
| CanNull (Set x) | |
| Ord x => CanMember (Set x) x | |
| Ord x => CanPack (Set x) x | |
| CanSingleton (Set x) x | |
| CanLength (Set x) Int | |
| (Ord a, Ord b) => CanMapFunc (Set a) (Set b) a b | |
| (Ord x, ~ * (Set x) s, ~ * x x') => CanInsert (x' -> s -> Set x) |
data HashSet a
A set of values. A set cannot contain duplicate values.
Instances
| Foldable HashSet | |
| (Hashable a, Eq a) => Eq (HashSet a) | |
| Show a => Show (HashSet a) | |
| (Hashable a, Eq a) => Monoid (HashSet a) | |
| NFData a => NFData (HashSet a) | |
| CanEmpty (Set x) | |
| CanNull (Set x) | |
| (Eq x, Hashable x) => CanMember (Set x) x | |
| (Hashable x, Eq x) => CanPack (Set x) x | |
| Hashable x => CanSingleton (Set x) x | |
| CanLength (Set x) Int | |
| (Eq b, Hashable b) => CanMapFunc (Set a) (Set b) a b | |
| (Eq x, Hashable x, ~ * (Set x) s, ~ * x x') => CanInsert (x' -> s -> Set x) |
data Vector a
Boxed vectors, supporting efficient slicing.
Instances
| Monad Vector | |
| Functor Vector | |
| Typeable1 Vector | |
| MonadPlus Vector | |
| Applicative Vector | |
| Foldable Vector | |
| Traversable Vector | |
| Alternative Vector | |
| Vector Vector a | |
| Eq a => Eq (Vector a) | |
| Data a => Data (Vector a) | |
| Ord a => Ord (Vector a) | |
| Read a => Read (Vector a) | |
| Show a => Show (Vector a) | |
| Monoid (Vector a) | |
| CanEmpty (Vector a) | |
| CanNull (Vector a) | |
| CanSplitAt (Vector a) Int | |
| CanAny (Vector a) a | |
| CanBreak (Vector a) a | |
| Eq x => CanMember (Vector x) x | |
| CanPack (Vector a) a | |
| CanSingleton (Vector a) a | |
| CanLength (Vector a) Int | |
| CanFilterFunc (Vector a) a | |
| CanFoldFunc (Vector a) accum a | |
| Monad m => CanMapM_Func (Vector a) a b m | |
| (~ * i a, ~ * co (Vector b)) => CanMapFunc (Vector a) co i b | |
| (~ * i a, ~ * co (Vector b)) => CanConcatMapFunc (Vector a) co i (Vector b) | |
| Monad m => CanMapMFunc (Vector a) (Vector b) a b m |
Numbers
data Word8
8-bit unsigned integer type
Instances
data Word64
64-bit unsigned integer type
data Int64
64-bit signed integer type
data Int
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Bounded Int | |
| Enum Int | |
| Eq Int | |
| Integral Int | |
| Num Int | |
| Ord Int | |
| Real Int | |
| Show Int | |
| Typeable Int | |
| Generic Int | |
| Hashable Int | |
| CanSplitAt ByteString Int | |
| CanSplitAt Text Int | |
| CanLength ByteString Int | |
| CanLength Text Int | |
| CanSplitAt [c] Int | |
| CanSplitAt (Vector a) Int | |
| CanLength [a] Int | |
| CanLength (Set x) Int | |
| CanLength (Vector a) Int | |
| CanLength (Set x) Int | |
| CanLength (Map k v) Int | |
| CanLength (Map k v) Int | |
| CanLength (Map k v) Int |
data Word
Monoids
class Monoid a where
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
mappend mempty x = x
mappend x mempty = x
mappend x (mappend y z) = mappend (mappend x y) z
mconcat =
foldrmappend mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Minimal complete definition: mempty and mappend.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
Methods
mempty :: a
Identity of mappend
mappend :: a -> a -> a
An associative operation
mconcat :: [a] -> a
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
| Monoid Ordering | |
| Monoid () | |
| Monoid All | |
| Monoid Any | |
| Monoid ByteString | |
| Monoid ByteString | |
| Monoid Text | |
| Monoid FilePath | |
| Monoid Text | |
| Monoid [a] | |
| Monoid a => Monoid (Dual a) | |
| Monoid (Endo a) | |
| Num a => Monoid (Sum a) | |
| Num a => Monoid (Product a) | |
| Monoid (First a) | |
| Monoid (Last a) | |
| Monoid a => Monoid (Maybe a) | Lift a semigroup into |
| Ord a => Monoid (Set a) | |
| (Hashable a, Eq a) => Monoid (HashSet a) | |
| Monoid (Vector a) | |
| Monoid b => Monoid (a -> b) | |
| (Monoid a, Monoid b) => Monoid (a, b) | |
| Ord k => Monoid (Map k v) | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) |
Arrow
first :: Arrow a => forall b c d. a b c -> a (b, d) (c, d)
Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.
second :: Arrow a => forall b c d. a b c -> a (d, b) (d, c)
A mirror image of first.
The default definition may be overridden with a more efficient version if desired.
(***) :: Arrow a => forall b c b' c'. a b c -> a b' c' -> a (b, b') (c, c')
Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
(&&&) :: Arrow a => forall b c c'. a b c -> a b c' -> a b (c, c')
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
Maybe
Either
partitionEithers :: [Either a b] -> ([a], [b])
Applicative
class Functor f => Applicative f where
A functor with application, providing operations to
A minimal complete definition must include implementations of these functions satisfying the following laws:
- identity
-
pureid<*>v = v - composition
-
pure(.)<*>u<*>v<*>w = u<*>(v<*>w) - homomorphism
-
puref<*>purex =pure(f x) - interchange
-
u<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
u *> v = pure (const id) <*> u <*> v
u <* v = pure const <*> u <*> v
As a consequence of these laws, the Functor instance for f will satisfy
fmap f x = pure f <*> x
If f is also a Monad, it should satisfy and
pure = return( (which implies that <*>) = appure and <*> satisfy the
applicative functor laws).
Methods
pure :: a -> f a
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b
Sequential application.
(*>) :: f a -> f b -> f b
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a
Sequence actions, discarding the value of the second argument.
Instances
| Applicative [] | |
| Applicative IO | |
| Applicative ZipList | |
| Applicative STM | |
| Applicative Maybe | |
| Applicative Vector | |
| Applicative ((->) a) | |
| Applicative (Either e) | |
| Monoid a => Applicative ((,) a) | |
| Applicative (ST s) | |
| Monoid m => Applicative (Const m) | |
| Monad m => Applicative (WrappedMonad m) | |
| Applicative (ST s) | |
| Arrow a => Applicative (WrappedArrow a b) |
Monad
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
Left-to-right Kleisli composition of monads.
Transformers
lift :: MonadTrans t => forall m a. Monad m => m a -> t m a
Lift a computation from the argument monad to the constructed monad.
Exceptions
class (Typeable e, Show e) => Exception e where
Any type that you wish to throw or catch as an exception must be an
instance of the Exception class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException
deriving (Show, Typeable)
instance Exception MyException
The default method definitions in the Exception class do what we need
in this case. You can now throw and catch ThisException and
ThatException as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler
data SomeCompilerException = forall e . Exception e => SomeCompilerException e
deriving Typeable
instance Show SomeCompilerException where
show (SomeCompilerException e) = show e
instance Exception SomeCompilerException
compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException
compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
SomeCompilerException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler
data SomeFrontendException = forall e . Exception e => SomeFrontendException e
deriving Typeable
instance Show SomeFrontendException where
show (SomeFrontendException e) = show e
instance Exception SomeFrontendException where
toException = compilerExceptionToException
fromException = compilerExceptionFromException
frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException
frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
SomeFrontendException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception
data MismatchedParentheses = MismatchedParentheses
deriving (Typeable, Show)
instance Exception MismatchedParentheses where
toException = frontendExceptionToException
fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses exception as
MismatchedParentheses, SomeFrontendException or
SomeCompilerException, but not other types, e.g. IOException:
*Main> throw MismatchedParenthesescatche -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatche -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatche -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatche -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
data SomeException
The SomeException type is the root of the exception type hierarchy.
When an exception of type e is thrown, behind the scenes it is
encapsulated in a SomeException.
throwIO :: Exception e => e -> IO a
A variant of throw that can only be used within the IO monad.
Although throwIO has a type that is an instance of the type of throw, the
two functions are subtly different:
throw e `seq` x ===> throw e throwIO e `seq` x ===> x
The first example will cause the exception e to be raised,
whereas the second one won't. In fact, throwIO will only cause
an exception to be raised when it is used within the IO monad.
The throwIO variant should be used in preference to throw to
raise an exception within the IO monad because it guarantees
ordering with respect to other IO operations, whereas throw
does not.
Files
data FilePath
(<.>) :: FilePath -> Text -> FilePath
An alias for addExtension.
hasExtension :: FilePath -> Text -> Bool
Get whether a FilePath’s last extension is the predicate.
basename :: FilePath -> FilePath
Retrieve a FilePath’s basename component.
basename "foo/bar.txt" == "bar"
filename :: FilePath -> FilePath
Retrieve a FilePath’s filename component.
filename "foo/bar.txt" == "bar.txt"
Non-standard
List-like classes
concatMap :: CanConcatMap f i o => (i -> o) -> fSource
singleton :: CanSingleton c i => i -> cSource
stripPrefix :: CanStripPrefix a => a -> a -> Maybe aSource
splitAt :: CanSplitAt c i => i -> c -> (c, c)Source
Map-like
Set-like
Text-like
Files
readFile :: CanReadFile a => FilePath -> aSource
writeFile :: CanWriteFile a => FilePath -> aSource
The print function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])