classy-prelude-1.4.0: A typeclass-based Prelude.

Safe HaskellNone
LanguageHaskell2010

ClassyPrelude

Contents

Synopsis

CorePrelude

undefined :: HasCallStack => a Source #

Deprecated: It is highly recommended that you either avoid partial functions or provide meaningful error messages

We define our own undefined which is marked as deprecated. This makes it useful to use during development, but lets you more easily get notifications if you accidentally ship partial code in production.

The classy prelude recommendation for when you need to really have a partial function in production is to use error with a very descriptive message so that, in case an exception is thrown, you get more information than Prelude.undefined.

Since 0.5.5

Standard

Monoid

(++) :: Monoid m => m -> m -> m infixr 5 Source #

Semigroup

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Since: 4.9.0.0

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

(a <> b) <> c = a <> (b <> c)

If a is also a Monoid we further require

(<>) = mappend

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in O(1) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Instances

Semigroup Ordering

Since: 4.9.0.0

Semigroup ()

Since: 4.9.0.0

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Void

Since: 4.9.0.0

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup Event

Since: 4.10.0.0

Methods

(<>) :: Event -> Event -> Event #

sconcat :: NonEmpty Event -> Event #

stimes :: Integral b => b -> Event -> Event #

Semigroup Lifetime

Since: 4.10.0.0

Semigroup All

Since: 4.9.0.0

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any

Since: 4.9.0.0

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup IntSet 
Semigroup ByteString 
Semigroup ShortByteString 
Semigroup ByteString 
Semigroup Doc 

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup [a]

Since: 4.9.0.0

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a)

Since: 4.9.0.0

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a)

Since: 4.10.0.0

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Semigroup a => Semigroup (Concurrently a)

Only defined by async for base >= 4.9

Since: 2.1.0

Ord a => Semigroup (Min a)

Since: 4.9.0.0

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a)

Since: 4.9.0.0

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a)

Since: 4.9.0.0

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m)

Since: 4.9.0.0

Semigroup a => Semigroup (Option a)

Since: 4.9.0.0

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup (NonEmpty a)

Since: 4.9.0.0

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (Identity a)

Since: 4.9.0.0

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup a => Semigroup (Dual a)

Since: 4.9.0.0

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a)

Since: 4.9.0.0

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Sum a)

Since: 4.9.0.0

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Semigroup (Product a)

Since: 4.9.0.0

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Semigroup (First a)

Since: 4.9.0.0

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup (Vector a) 

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

(Hashable a, Eq a) => Semigroup (HashSet a) 

Methods

(<>) :: HashSet a -> HashSet a -> HashSet a #

sconcat :: NonEmpty (HashSet a) -> HashSet a #

stimes :: Integral b => b -> HashSet a -> HashSet a #

Ord a => Semigroup (Set a) 

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

Semigroup (Seq a) 

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Semigroup (IntMap a) 

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (DList a) 

Methods

(<>) :: DList a -> DList a -> DList a #

sconcat :: NonEmpty (DList a) -> DList a #

stimes :: Integral b => b -> DList a -> DList a #

(Semigroup mono, GrowingAppend mono) => Semigroup (NonNull mono) 

Methods

(<>) :: NonNull mono -> NonNull mono -> NonNull mono #

sconcat :: NonEmpty (NonNull mono) -> NonNull mono #

stimes :: Integral b => b -> NonNull mono -> NonNull mono #

Semigroup (Doc a) 

Methods

(<>) :: Doc a -> Doc a -> Doc a #

sconcat :: NonEmpty (Doc a) -> Doc a #

stimes :: Integral b => b -> Doc a -> Doc a #

Storable a => Semigroup (Vector a) 

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Prim a => Semigroup (Vector a) 

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Semigroup b => Semigroup (a -> b)

Since: 4.9.0.0

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b => b -> (a -> b) -> a -> b #

Semigroup (Either a b)

Since: 4.9.0.0

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: 4.9.0.0

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b => b -> (a, b) -> (a, b) #

Semigroup (Proxy k s)

Since: 4.9.0.0

Methods

(<>) :: Proxy k s -> Proxy k s -> Proxy k s #

sconcat :: NonEmpty (Proxy k s) -> Proxy k s #

stimes :: Integral b => b -> Proxy k s -> Proxy k s #

(Eq k, Hashable k) => Semigroup (HashMap k v) 

Methods

(<>) :: HashMap k v -> HashMap k v -> HashMap k v #

sconcat :: NonEmpty (HashMap k v) -> HashMap k v #

stimes :: Integral b => b -> HashMap k v -> HashMap k v #

Ord k => Semigroup (Map k v) 

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

Apply f => Semigroup (Act f a) 

Methods

(<>) :: Act f a -> Act f a -> Act f a #

sconcat :: NonEmpty (Act f a) -> Act f a #

stimes :: Integral b => b -> Act f a -> Act f a #

(MonadUnliftIO m, Semigroup a) => Semigroup (Concurrently m a)

Only defined by async for base >= 4.9.

Since: 0.1.0.0

Methods

(<>) :: Concurrently m a -> Concurrently m a -> Concurrently m a #

sconcat :: NonEmpty (Concurrently m a) -> Concurrently m a #

stimes :: Integral b => b -> Concurrently m a -> Concurrently m a #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b => b -> (a, b, c) -> (a, b, c) #

Semigroup a => Semigroup (Const k a b)

Since: 4.9.0.0

Methods

(<>) :: Const k a b -> Const k a b -> Const k a b #

sconcat :: NonEmpty (Const k a b) -> Const k a b #

stimes :: Integral b => b -> Const k a b -> Const k a b #

Alternative f => Semigroup (Alt * f a)

Since: 4.9.0.0

Methods

(<>) :: Alt * f a -> Alt * f a -> Alt * f a #

sconcat :: NonEmpty (Alt * f a) -> Alt * f a #

stimes :: Integral b => b -> Alt * f a -> Alt * f a #

Semigroup a => Semigroup (Tagged k s a) 

Methods

(<>) :: Tagged k s a -> Tagged k s a -> Tagged k s a #

sconcat :: NonEmpty (Tagged k s a) -> Tagged k s a #

stimes :: Integral b => b -> Tagged k s a -> Tagged k s a #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b => b -> (a, b, c, d) -> (a, b, c, d) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b => b -> (a, b, c, d, e) -> (a, b, c, d, e) #

data WrappedMonoid m :: * -> * #

Provide a Semigroup for an arbitrary Monoid.

Instances

NFData1 WrappedMonoid

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> WrappedMonoid a -> () #

Bounded m => Bounded (WrappedMonoid m) 
Enum a => Enum (WrappedMonoid a)

Since: 4.9.0.0

Eq m => Eq (WrappedMonoid m) 
Data m => Data (WrappedMonoid m) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

Ord m => Ord (WrappedMonoid m) 
Read m => Read (WrappedMonoid m) 
Show m => Show (WrappedMonoid m) 
Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Monoid m => Semigroup (WrappedMonoid m)

Since: 4.9.0.0

Monoid m => Monoid (WrappedMonoid m)

Since: 4.9.0.0

Hashable a => Hashable (WrappedMonoid a) 
NFData m => NFData (WrappedMonoid m)

Since: 1.4.2.0

Methods

rnf :: WrappedMonoid m -> () #

Generic1 * WrappedMonoid 

Associated Types

type Rep1 WrappedMonoid (f :: WrappedMonoid -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 WrappedMonoid f a #

to1 :: Rep1 WrappedMonoid f a -> f a #

type Rep (WrappedMonoid m) 
type Rep (WrappedMonoid m) = D1 * (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 * (MetaCons "WrapMonoid" PrefixI True) (S1 * (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * m)))
type Rep1 * WrappedMonoid 
type Rep1 * WrappedMonoid = D1 * (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 * (MetaCons "WrapMonoid" PrefixI True) (S1 * (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

Functor

Applicative

(<&&>) :: Applicative a => a Bool -> a Bool -> a Bool infixr 3 Source #

&& lifted to an Applicative.

Since: 0.12.8

(<||>) :: Applicative a => a Bool -> a Bool -> a Bool infixr 2 Source #

|| lifted to an Applicative.

Since: 0.12.8

Monad

whenM :: Monad m => m Bool -> m () -> m () Source #

Only perform the action if the predicate returns True.

Since 0.9.2

unlessM :: Monad m => m Bool -> m () -> m () Source #

Only perform the action if the predicate returns False.

Since 0.9.2

UnliftIO reexports

module UnliftIO

Mutable references

alwaysSTM :: STM Bool -> STM () Source #

Synonym for always.

orElseSTM :: STM a -> STM a -> STM a Source #

Synonym for orElse.

STM Channels

Primitive (exported since 0.9.4)

primToPrim :: (PrimBase m1, PrimMonad m2, (~) * (PrimState m1) (PrimState m2)) => m1 a -> m2 a #

Convert a PrimBase to another monad with the same state token.

primToIO :: (PrimBase m, (~) * (PrimState m) RealWorld) => m a -> IO a #

Convert a PrimBase with a RealWorld state token to IO

primToST :: PrimBase m => m a -> ST (PrimState m) a #

Convert a PrimBase to ST

Debugging

trace :: String -> a -> a Source #

Warning: Leaving traces in the code

We define our own trace (and also its variants) which provides a warning when used. So that tracing is available during development, but the compiler reminds you to not leave them in the code for production.

traceShow :: Show a => a -> b -> b Source #

Warning: Leaving traces in the code

traceId :: String -> String Source #

Warning: Leaving traces in the code

Since 0.5.9

traceM :: Monad m => String -> m () Source #

Warning: Leaving traces in the code

Since 0.5.9

traceShowId :: Show a => a -> a Source #

Warning: Leaving traces in the code

Since 0.5.9

traceShowM :: (Show a, Monad m) => a -> m () Source #

Warning: Leaving traces in the code

Since 0.5.9

Time (since 0.6.1)

module Data.Time

Generics (since 0.8.1)

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

Minimal complete definition

from, to

Instances

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic Ordering 

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic Exp 

Associated Types

type Rep Exp :: * -> * #

Methods

from :: Exp -> Rep Exp x #

to :: Rep Exp x -> Exp #

Generic Match 

Associated Types

type Rep Match :: * -> * #

Methods

from :: Match -> Rep Match x #

to :: Rep Match x -> Match #

Generic Clause 

Associated Types

type Rep Clause :: * -> * #

Methods

from :: Clause -> Rep Clause x #

to :: Rep Clause x -> Clause #

Generic Pat 

Associated Types

type Rep Pat :: * -> * #

Methods

from :: Pat -> Rep Pat x #

to :: Rep Pat x -> Pat #

Generic Type 

Associated Types

type Rep Type :: * -> * #

Methods

from :: Type -> Rep Type x #

to :: Rep Type x -> Type #

Generic Dec 

Associated Types

type Rep Dec :: * -> * #

Methods

from :: Dec -> Rep Dec x #

to :: Rep Dec x -> Dec #

Generic Name 

Associated Types

type Rep Name :: * -> * #

Methods

from :: Name -> Rep Name x #

to :: Rep Name x -> Name #

Generic FunDep 

Associated Types

type Rep FunDep :: * -> * #

Methods

from :: FunDep -> Rep FunDep x #

to :: Rep FunDep x -> FunDep #

Generic TyVarBndr 

Associated Types

type Rep TyVarBndr :: * -> * #

Generic InjectivityAnn 

Associated Types

type Rep InjectivityAnn :: * -> * #

Generic Overlap 

Associated Types

type Rep Overlap :: * -> * #

Methods

from :: Overlap -> Rep Overlap x #

to :: Rep Overlap x -> Overlap #

Generic DerivStrategy 

Associated Types

type Rep DerivStrategy :: * -> * #

Generic () 

Associated Types

type Rep () :: * -> * #

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Void 

Associated Types

type Rep Void :: * -> * #

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic Version 

Associated Types

type Rep Version :: * -> * #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic ExitCode 

Associated Types

type Rep ExitCode :: * -> * #

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic Fixity 

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic Associativity 

Associated Types

type Rep Associativity :: * -> * #

Generic SourceUnpackedness 
Generic SourceStrictness 
Generic DecidedStrictness 
Generic Extension 

Associated Types

type Rep Extension :: * -> * #

Generic ForeignSrcLang 

Associated Types

type Rep ForeignSrcLang :: * -> * #

Generic Doc 

Associated Types

type Rep Doc :: * -> * #

Methods

from :: Doc -> Rep Doc x #

to :: Rep Doc x -> Doc #

Generic TextDetails 

Associated Types

type Rep TextDetails :: * -> * #

Generic Style 

Associated Types

type Rep Style :: * -> * #

Methods

from :: Style -> Rep Style x #

to :: Rep Style x -> Style #

Generic Mode 

Associated Types

type Rep Mode :: * -> * #

Methods

from :: Mode -> Rep Mode x #

to :: Rep Mode x -> Mode #

Generic ModName 

Associated Types

type Rep ModName :: * -> * #

Methods

from :: ModName -> Rep ModName x #

to :: Rep ModName x -> ModName #

Generic PkgName 

Associated Types

type Rep PkgName :: * -> * #

Methods

from :: PkgName -> Rep PkgName x #

to :: Rep PkgName x -> PkgName #

Generic Module 

Associated Types

type Rep Module :: * -> * #

Methods

from :: Module -> Rep Module x #

to :: Rep Module x -> Module #

Generic OccName 

Associated Types

type Rep OccName :: * -> * #

Methods

from :: OccName -> Rep OccName x #

to :: Rep OccName x -> OccName #

Generic NameFlavour 

Associated Types

type Rep NameFlavour :: * -> * #

Generic NameSpace 

Associated Types

type Rep NameSpace :: * -> * #

Generic Loc 

Associated Types

type Rep Loc :: * -> * #

Methods

from :: Loc -> Rep Loc x #

to :: Rep Loc x -> Loc #

Generic Info 

Associated Types

type Rep Info :: * -> * #

Methods

from :: Info -> Rep Info x #

to :: Rep Info x -> Info #

Generic ModuleInfo 

Associated Types

type Rep ModuleInfo :: * -> * #

Generic Fixity 

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic FixityDirection 
Generic Lit 

Associated Types

type Rep Lit :: * -> * #

Methods

from :: Lit -> Rep Lit x #

to :: Rep Lit x -> Lit #

Generic Body 

Associated Types

type Rep Body :: * -> * #

Methods

from :: Body -> Rep Body x #

to :: Rep Body x -> Body #

Generic Guard 

Associated Types

type Rep Guard :: * -> * #

Methods

from :: Guard -> Rep Guard x #

to :: Rep Guard x -> Guard #

Generic Stmt 

Associated Types

type Rep Stmt :: * -> * #

Methods

from :: Stmt -> Rep Stmt x #

to :: Rep Stmt x -> Stmt #

Generic Range 

Associated Types

type Rep Range :: * -> * #

Methods

from :: Range -> Rep Range x #

to :: Rep Range x -> Range #

Generic DerivClause 

Associated Types

type Rep DerivClause :: * -> * #

Generic TypeFamilyHead 

Associated Types

type Rep TypeFamilyHead :: * -> * #

Generic TySynEqn 

Associated Types

type Rep TySynEqn :: * -> * #

Methods

from :: TySynEqn -> Rep TySynEqn x #

to :: Rep TySynEqn x -> TySynEqn #

Generic FamFlavour 

Associated Types

type Rep FamFlavour :: * -> * #

Generic Foreign 

Associated Types

type Rep Foreign :: * -> * #

Methods

from :: Foreign -> Rep Foreign x #

to :: Rep Foreign x -> Foreign #

Generic Callconv 

Associated Types

type Rep Callconv :: * -> * #

Methods

from :: Callconv -> Rep Callconv x #

to :: Rep Callconv x -> Callconv #

Generic Safety 

Associated Types

type Rep Safety :: * -> * #

Methods

from :: Safety -> Rep Safety x #

to :: Rep Safety x -> Safety #

Generic Pragma 

Associated Types

type Rep Pragma :: * -> * #

Methods

from :: Pragma -> Rep Pragma x #

to :: Rep Pragma x -> Pragma #

Generic Inline 

Associated Types

type Rep Inline :: * -> * #

Methods

from :: Inline -> Rep Inline x #

to :: Rep Inline x -> Inline #

Generic RuleMatch 

Associated Types

type Rep RuleMatch :: * -> * #

Generic Phases 

Associated Types

type Rep Phases :: * -> * #

Methods

from :: Phases -> Rep Phases x #

to :: Rep Phases x -> Phases #

Generic RuleBndr 

Associated Types

type Rep RuleBndr :: * -> * #

Methods

from :: RuleBndr -> Rep RuleBndr x #

to :: Rep RuleBndr x -> RuleBndr #

Generic AnnTarget 

Associated Types

type Rep AnnTarget :: * -> * #

Generic SourceUnpackedness 
Generic SourceStrictness 
Generic DecidedStrictness 
Generic Con 

Associated Types

type Rep Con :: * -> * #

Methods

from :: Con -> Rep Con x #

to :: Rep Con x -> Con #

Generic Bang 

Associated Types

type Rep Bang :: * -> * #

Methods

from :: Bang -> Rep Bang x #

to :: Rep Bang x -> Bang #

Generic PatSynDir 

Associated Types

type Rep PatSynDir :: * -> * #

Generic PatSynArgs 

Associated Types

type Rep PatSynArgs :: * -> * #

Generic FamilyResultSig 
Generic TyLit 

Associated Types

type Rep TyLit :: * -> * #

Methods

from :: TyLit -> Rep TyLit x #

to :: Rep TyLit x -> TyLit #

Generic Role 

Associated Types

type Rep Role :: * -> * #

Methods

from :: Role -> Rep Role x #

to :: Rep Role x -> Role #

Generic AnnLookup 

Associated Types

type Rep AnnLookup :: * -> * #

Generic [a] 

Associated Types

type Rep [a] :: * -> * #

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (Par1 p) 

Associated Types

type Rep (Par1 p) :: * -> * #

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Min a) 

Associated Types

type Rep (Min a) :: * -> * #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (Max a) 

Associated Types

type Rep (Max a) :: * -> * #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Generic (Option a) 

Associated Types

type Rep (Option a) :: * -> * #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Generic (NonEmpty a) 

Associated Types

type Rep (NonEmpty a) :: * -> * #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (ZipList a) 

Associated Types

type Rep (ZipList a) :: * -> * #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Identity a) 

Associated Types

type Rep (Identity a) :: * -> * #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (Tree a) 

Associated Types

type Rep (Tree a) :: * -> * #

Methods

from :: Tree a -> Rep (Tree a) x #

to :: Rep (Tree a) x -> Tree a #

Generic (ViewL a) 

Associated Types

type Rep (ViewL a) :: * -> * #

Methods

from :: ViewL a -> Rep (ViewL a) x #

to :: Rep (ViewL a) x -> ViewL a #

Generic (ViewR a) 

Associated Types

type Rep (ViewR a) :: * -> * #

Methods

from :: ViewR a -> Rep (ViewR a) x #

to :: Rep (ViewR a) x -> ViewR a #

Generic (Doc a) 

Associated Types

type Rep (Doc a) :: * -> * #

Methods

from :: Doc a -> Rep (Doc a) x #

to :: Rep (Doc a) x -> Doc a #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (V1 k p) 

Associated Types

type Rep (V1 k p) :: * -> * #

Methods

from :: V1 k p -> Rep (V1 k p) x #

to :: Rep (V1 k p) x -> V1 k p #

Generic (U1 k p) 

Associated Types

type Rep (U1 k p) :: * -> * #

Methods

from :: U1 k p -> Rep (U1 k p) x #

to :: Rep (U1 k p) x -> U1 k p #

Generic (a, b) 

Associated Types

type Rep (a, b) :: * -> * #

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (Arg a b) 

Associated Types

type Rep (Arg a b) :: * -> * #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (WrappedMonad m a) 

Associated Types

type Rep (WrappedMonad m a) :: * -> * #

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Proxy k t) 

Associated Types

type Rep (Proxy k t) :: * -> * #

Methods

from :: Proxy k t -> Rep (Proxy k t) x #

to :: Rep (Proxy k t) x -> Proxy k t #

Generic (Rec1 k f p) 

Associated Types

type Rep (Rec1 k f p) :: * -> * #

Methods

from :: Rec1 k f p -> Rep (Rec1 k f p) x #

to :: Rep (Rec1 k f p) x -> Rec1 k f p #

Generic (URec k (Ptr ()) p) 

Associated Types

type Rep (URec k (Ptr ()) p) :: * -> * #

Methods

from :: URec k (Ptr ()) p -> Rep (URec k (Ptr ()) p) x #

to :: Rep (URec k (Ptr ()) p) x -> URec k (Ptr ()) p #

Generic (URec k Char p) 

Associated Types

type Rep (URec k Char p) :: * -> * #

Methods

from :: URec k Char p -> Rep (URec k Char p) x #

to :: Rep (URec k Char p) x -> URec k Char p #

Generic (URec k Double p) 

Associated Types

type Rep (URec k Double p) :: * -> * #

Methods

from :: URec k Double p -> Rep (URec k Double p) x #

to :: Rep (URec k Double p) x -> URec k Double p #

Generic (URec k Float p) 

Associated Types

type Rep (URec k Float p) :: * -> * #

Methods

from :: URec k Float p -> Rep (URec k Float p) x #

to :: Rep (URec k Float p) x -> URec k Float p #

Generic (URec k Int p) 

Associated Types

type Rep (URec k Int p) :: * -> * #

Methods

from :: URec k Int p -> Rep (URec k Int p) x #

to :: Rep (URec k Int p) x -> URec k Int p #

Generic (URec k Word p) 

Associated Types

type Rep (URec k Word p) :: * -> * #

Methods

from :: URec k Word p -> Rep (URec k Word p) x #

to :: Rep (URec k Word p) x -> URec k Word p #

Generic (a, b, c) 

Associated Types

type Rep (a, b, c) :: * -> * #

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (WrappedArrow a b c) 

Associated Types

type Rep (WrappedArrow a b c) :: * -> * #

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Const k a b) 

Associated Types

type Rep (Const k a b) :: * -> * #

Methods

from :: Const k a b -> Rep (Const k a b) x #

to :: Rep (Const k a b) x -> Const k a b #

Generic (Join k p a) 

Associated Types

type Rep (Join k p a) :: * -> * #

Methods

from :: Join k p a -> Rep (Join k p a) x #

to :: Rep (Join k p a) x -> Join k p a #

Generic (Tagged k s b) 

Associated Types

type Rep (Tagged k s b) :: * -> * #

Methods

from :: Tagged k s b -> Rep (Tagged k s b) x #

to :: Rep (Tagged k s b) x -> Tagged k s b #

Generic (K1 k i c p) 

Associated Types

type Rep (K1 k i c p) :: * -> * #

Methods

from :: K1 k i c p -> Rep (K1 k i c p) x #

to :: Rep (K1 k i c p) x -> K1 k i c p #

Generic ((:+:) k f g p) 

Associated Types

type Rep ((k :+: f) g p) :: * -> * #

Methods

from :: (k :+: f) g p -> Rep ((k :+: f) g p) x #

to :: Rep ((k :+: f) g p) x -> (k :+: f) g p #

Generic ((:*:) k f g p) 

Associated Types

type Rep ((k :*: f) g p) :: * -> * #

Methods

from :: (k :*: f) g p -> Rep ((k :*: f) g p) x #

to :: Rep ((k :*: f) g p) x -> (k :*: f) g p #

Generic (a, b, c, d) 

Associated Types

type Rep (a, b, c, d) :: * -> * #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (Product k f g a) 

Associated Types

type Rep (Product k f g a) :: * -> * #

Methods

from :: Product k f g a -> Rep (Product k f g a) x #

to :: Rep (Product k f g a) x -> Product k f g a #

Generic (Sum k f g a) 

Associated Types

type Rep (Sum k f g a) :: * -> * #

Methods

from :: Sum k f g a -> Rep (Sum k f g a) x #

to :: Rep (Sum k f g a) x -> Sum k f g a #

Generic (M1 k i c f p) 

Associated Types

type Rep (M1 k i c f p) :: * -> * #

Methods

from :: M1 k i c f p -> Rep (M1 k i c f p) x #

to :: Rep (M1 k i c f p) x -> M1 k i c f p #

Generic ((:.:) k2 k1 f g p) 

Associated Types

type Rep ((k2 :.: k1) f g p) :: * -> * #

Methods

from :: (k2 :.: k1) f g p -> Rep ((k2 :.: k1) f g p) x #

to :: Rep ((k2 :.: k1) f g p) x -> (k2 :.: k1) f g p #

Generic (a, b, c, d, e) 

Associated Types

type Rep (a, b, c, d, e) :: * -> * #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (Compose k1 k2 f g a) 

Associated Types

type Rep (Compose k1 k2 f g a) :: * -> * #

Methods

from :: Compose k1 k2 f g a -> Rep (Compose k1 k2 f g a) x #

to :: Rep (Compose k1 k2 f g a) x -> Compose k1 k2 f g a #

Generic (WrappedBifunctor k1 k2 p a b) 

Associated Types

type Rep (WrappedBifunctor k1 k2 p a b) :: * -> * #

Methods

from :: WrappedBifunctor k1 k2 p a b -> Rep (WrappedBifunctor k1 k2 p a b) x #

to :: Rep (WrappedBifunctor k1 k2 p a b) x -> WrappedBifunctor k1 k2 p a b #

Generic (Joker k2 k1 g a b) 

Associated Types

type Rep (Joker k2 k1 g a b) :: * -> * #

Methods

from :: Joker k2 k1 g a b -> Rep (Joker k2 k1 g a b) x #

to :: Rep (Joker k2 k1 g a b) x -> Joker k2 k1 g a b #

Generic (Flip k1 k2 p a b) 

Associated Types

type Rep (Flip k1 k2 p a b) :: * -> * #

Methods

from :: Flip k1 k2 p a b -> Rep (Flip k1 k2 p a b) x #

to :: Rep (Flip k1 k2 p a b) x -> Flip k1 k2 p a b #

Generic (Clown k1 k2 f a b) 

Associated Types

type Rep (Clown k1 k2 f a b) :: * -> * #

Methods

from :: Clown k1 k2 f a b -> Rep (Clown k1 k2 f a b) x #

to :: Rep (Clown k1 k2 f a b) x -> Clown k1 k2 f a b #

Generic (a, b, c, d, e, f) 

Associated Types

type Rep (a, b, c, d, e, f) :: * -> * #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (Sum k1 k2 p q a b) 

Associated Types

type Rep (Sum k1 k2 p q a b) :: * -> * #

Methods

from :: Sum k1 k2 p q a b -> Rep (Sum k1 k2 p q a b) x #

to :: Rep (Sum k1 k2 p q a b) x -> Sum k1 k2 p q a b #

Generic (Product k1 k2 f g a b) 

Associated Types

type Rep (Product k1 k2 f g a b) :: * -> * #

Methods

from :: Product k1 k2 f g a b -> Rep (Product k1 k2 f g a b) x #

to :: Rep (Product k1 k2 f g a b) x -> Product k1 k2 f g a b #

Generic (a, b, c, d, e, f, g) 

Associated Types

type Rep (a, b, c, d, e, f, g) :: * -> * #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

Generic (Tannen k1 k2 k3 f p a b) 

Associated Types

type Rep (Tannen k1 k2 k3 f p a b) :: * -> * #

Methods

from :: Tannen k1 k2 k3 f p a b -> Rep (Tannen k1 k2 k3 f p a b) x #

to :: Rep (Tannen k1 k2 k3 f p a b) x -> Tannen k1 k2 k3 f p a b #

Generic (Biff k1 k2 k3 k4 p f g a b) 

Associated Types

type Rep (Biff k1 k2 k3 k4 p f g a b) :: * -> * #

Methods

from :: Biff k1 k2 k3 k4 p f g a b -> Rep (Biff k1 k2 k3 k4 p f g a b) x #

to :: Rep (Biff k1 k2 k3 k4 p f g a b) x -> Biff k1 k2 k3 k4 p f g a b #

Transformers (since 0.9.4)

newtype Identity a :: * -> * #

Identity functor and monad. (a non-strict monad)

Since: 4.8.0.0

Constructors

Identity 

Fields

Instances

Monad Identity

Since: 4.8.0.0

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

fail :: String -> Identity a #

Functor Identity

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

MonadFix Identity

Since: 4.8.0.0

Methods

mfix :: (a -> Identity a) -> Identity a #

Applicative Identity

Since: 4.8.0.0

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

liftA2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Foldable Identity

Since: 4.8.0.0

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Traversable Identity 

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Representable Identity 

Associated Types

type Rep (Identity :: * -> *) :: * #

Methods

tabulate :: (Rep Identity -> a) -> Identity a #

index :: Identity a -> Rep Identity -> a #

Eq1 Identity

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Identity a -> Identity b -> Bool #

Ord1 Identity

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Identity a -> Identity b -> Ordering #

Read1 Identity

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Identity a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Identity a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Identity a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Identity a] #

Show1 Identity

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Identity a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Identity a] -> ShowS #

Comonad Identity 

Methods

extract :: Identity a -> a #

duplicate :: Identity a -> Identity (Identity a) #

extend :: (Identity a -> b) -> Identity a -> Identity b #

ComonadApply Identity 

Methods

(<@>) :: Identity (a -> b) -> Identity a -> Identity b #

(@>) :: Identity a -> Identity b -> Identity b #

(<@) :: Identity a -> Identity b -> Identity a #

NFData1 Identity

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Identity a -> () #

Hashable1 Identity 

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Identity a -> Int #

Keyed Identity 

Methods

mapWithKey :: (Key Identity -> a -> b) -> Identity a -> Identity b #

Zip Identity 

Methods

zipWith :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

zip :: Identity a -> Identity b -> Identity (a, b) #

zap :: Identity (a -> b) -> Identity a -> Identity b #

ZipWithKey Identity 

Methods

zipWithKey :: (Key Identity -> a -> b -> c) -> Identity a -> Identity b -> Identity c #

zapWithKey :: Identity (Key Identity -> a -> b) -> Identity a -> Identity b #

Indexable Identity 

Methods

index :: Identity a -> Key Identity -> a #

Lookup Identity 

Methods

lookup :: Key Identity -> Identity a -> Maybe a #

Adjustable Identity 

Methods

adjust :: (a -> a) -> Key Identity -> Identity a -> Identity a #

replace :: Key Identity -> a -> Identity a -> Identity a #

FoldableWithKey Identity 

Methods

toKeyedList :: Identity a -> [(Key Identity, a)] #

foldMapWithKey :: Monoid m => (Key Identity -> a -> m) -> Identity a -> m #

foldrWithKey :: (Key Identity -> a -> b -> b) -> b -> Identity a -> b #

foldlWithKey :: (b -> Key Identity -> a -> b) -> b -> Identity a -> b #

FoldableWithKey1 Identity 

Methods

foldMapWithKey1 :: Semigroup m => (Key Identity -> a -> m) -> Identity a -> m #

TraversableWithKey Identity 

Methods

traverseWithKey :: Applicative f => (Key Identity -> a -> f b) -> Identity a -> f (Identity b) #

mapWithKeyM :: Monad m => (Key Identity -> a -> m b) -> Identity a -> m (Identity b) #

TraversableWithKey1 Identity 

Methods

traverseWithKey1 :: Apply f => (Key Identity -> a -> f b) -> Identity a -> f (Identity b) #

Apply Identity 

Methods

(<.>) :: Identity (a -> b) -> Identity a -> Identity b #

(.>) :: Identity a -> Identity b -> Identity b #

(<.) :: Identity a -> Identity b -> Identity a #

liftF2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

Bind Identity 

Methods

(>>-) :: Identity a -> (a -> Identity b) -> Identity b #

join :: Identity (Identity a) -> Identity a #

Bounded a => Bounded (Identity a) 
Enum a => Enum (Identity a) 
Eq a => Eq (Identity a) 

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Floating a => Floating (Identity a) 
Fractional a => Fractional (Identity a) 
Integral a => Integral (Identity a) 
Num a => Num (Identity a) 
Ord a => Ord (Identity a) 

Methods

compare :: Identity a -> Identity a -> Ordering #

(<) :: Identity a -> Identity a -> Bool #

(<=) :: Identity a -> Identity a -> Bool #

(>) :: Identity a -> Identity a -> Bool #

(>=) :: Identity a -> Identity a -> Bool #

max :: Identity a -> Identity a -> Identity a #

min :: Identity a -> Identity a -> Identity a #

Read a => Read (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: 4.8.0.0

Real a => Real (Identity a) 

Methods

toRational :: Identity a -> Rational #

RealFloat a => RealFloat (Identity a) 
RealFrac a => RealFrac (Identity a) 

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: 4.8.0.0

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Ix a => Ix (Identity a) 
Generic (Identity a) 

Associated Types

type Rep (Identity a) :: * -> * #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Semigroup a => Semigroup (Identity a)

Since: 4.9.0.0

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Monoid a => Monoid (Identity a) 

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Storable a => Storable (Identity a) 

Methods

sizeOf :: Identity a -> Int #

alignment :: Identity a -> Int #

peekElemOff :: Ptr (Identity a) -> Int -> IO (Identity a) #

pokeElemOff :: Ptr (Identity a) -> Int -> Identity a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Identity a) #

pokeByteOff :: Ptr b -> Int -> Identity a -> IO () #

peek :: Ptr (Identity a) -> IO (Identity a) #

poke :: Ptr (Identity a) -> Identity a -> IO () #

Bits a => Bits (Identity a) 
FiniteBits a => FiniteBits (Identity a) 
Hashable a => Hashable (Identity a) 

Methods

hashWithSalt :: Int -> Identity a -> Int #

hash :: Identity a -> Int #

NFData a => NFData (Identity a)

Since: 1.4.0.0

Methods

rnf :: Identity a -> () #

MonoFunctor (Identity a) 

Methods

omap :: (Element (Identity a) -> Element (Identity a)) -> Identity a -> Identity a #

MonoFoldable (Identity a) 

Methods

ofoldMap :: Monoid m => (Element (Identity a) -> m) -> Identity a -> m #

ofoldr :: (Element (Identity a) -> b -> b) -> b -> Identity a -> b #

ofoldl' :: (a -> Element (Identity a) -> a) -> a -> Identity a -> a #

otoList :: Identity a -> [Element (Identity a)] #

oall :: (Element (Identity a) -> Bool) -> Identity a -> Bool #

oany :: (Element (Identity a) -> Bool) -> Identity a -> Bool #

onull :: Identity a -> Bool #

olength :: Identity a -> Int #

olength64 :: Identity a -> Int64 #

ocompareLength :: Integral i => Identity a -> i -> Ordering #

otraverse_ :: Applicative f => (Element (Identity a) -> f b) -> Identity a -> f () #

ofor_ :: Applicative f => Identity a -> (Element (Identity a) -> f b) -> f () #

omapM_ :: Applicative m => (Element (Identity a) -> m ()) -> Identity a -> m () #

oforM_ :: Applicative m => Identity a -> (Element (Identity a) -> m ()) -> m () #

ofoldlM :: Monad m => (a -> Element (Identity a) -> m a) -> a -> Identity a -> m a #

ofoldMap1Ex :: Semigroup m => (Element (Identity a) -> m) -> Identity a -> m #

ofoldr1Ex :: (Element (Identity a) -> Element (Identity a) -> Element (Identity a)) -> Identity a -> Element (Identity a) #

ofoldl1Ex' :: (Element (Identity a) -> Element (Identity a) -> Element (Identity a)) -> Identity a -> Element (Identity a) #

headEx :: Identity a -> Element (Identity a) #

lastEx :: Identity a -> Element (Identity a) #

unsafeHead :: Identity a -> Element (Identity a) #

unsafeLast :: Identity a -> Element (Identity a) #

maximumByEx :: (Element (Identity a) -> Element (Identity a) -> Ordering) -> Identity a -> Element (Identity a) #

minimumByEx :: (Element (Identity a) -> Element (Identity a) -> Ordering) -> Identity a -> Element (Identity a) #

oelem :: Element (Identity a) -> Identity a -> Bool #

onotElem :: Element (Identity a) -> Identity a -> Bool #

MonoTraversable (Identity a) 

Methods

otraverse :: Applicative f => (Element (Identity a) -> f (Element (Identity a))) -> Identity a -> f (Identity a) #

omapM :: Applicative m => (Element (Identity a) -> m (Element (Identity a))) -> Identity a -> m (Identity a) #

MonoPointed (Identity a) 

Methods

opoint :: Element (Identity a) -> Identity a #

Generic1 * Identity 

Associated Types

type Rep1 Identity (f :: Identity -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Identity f a #

to1 :: Rep1 Identity f a -> f a #

type Rep Identity 
type Rep Identity = ()
type Key Identity 
type Key Identity = ()
type Rep (Identity a) 
type Rep (Identity a) = D1 * (MetaData "Identity" "Data.Functor.Identity" "base" True) (C1 * (MetaCons "Identity" PrefixI True) (S1 * (MetaSel (Just Symbol "runIdentity") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * a)))
type Element (Identity a) 
type Element (Identity a) = a
type Rep1 * Identity 
type Rep1 * Identity = D1 * (MetaData "Identity" "Data.Functor.Identity" "base" True) (C1 * (MetaCons "Identity" PrefixI True) (S1 * (MetaSel (Just Symbol "runIdentity") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))

class Monad m => MonadReader r (m :: * -> *) | m -> r where #

See examples in Control.Monad.Reader. Note, the partially applied function type (->) r is a simple reader monad. See the instance declaration below.

Minimal complete definition

(ask | reader), local

Methods

ask :: m r #

Retrieves the monad environment.

Instances

MonadReader r m => MonadReader r (MaybeT m) 

Methods

ask :: MaybeT m r #

local :: (r -> r) -> MaybeT m a -> MaybeT m a #

reader :: (r -> a) -> MaybeT m a #

MonadReader r m => MonadReader r (ListT m) 

Methods

ask :: ListT m r #

local :: (r -> r) -> ListT m a -> ListT m a #

reader :: (r -> a) -> ListT m a #

(Representable f, (~) * (Rep f) a) => MonadReader a (Co f) 

Methods

ask :: Co f a #

local :: (a -> a) -> Co f a -> Co f a #

reader :: (a -> a) -> Co f a #

(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) 

Methods

ask :: WriterT w m r #

local :: (r -> r) -> WriterT w m a -> WriterT w m a #

reader :: (r -> a) -> WriterT w m a #

(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) 

Methods

ask :: WriterT w m r #

local :: (r -> r) -> WriterT w m a -> WriterT w m a #

reader :: (r -> a) -> WriterT w m a #

MonadReader r m => MonadReader r (StateT s m) 

Methods

ask :: StateT s m r #

local :: (r -> r) -> StateT s m a -> StateT s m a #

reader :: (r -> a) -> StateT s m a #

MonadReader r m => MonadReader r (StateT s m) 

Methods

ask :: StateT s m r #

local :: (r -> r) -> StateT s m a -> StateT s m a #

reader :: (r -> a) -> StateT s m a #

MonadReader r m => MonadReader r (IdentityT * m) 

Methods

ask :: IdentityT * m r #

local :: (r -> r) -> IdentityT * m a -> IdentityT * m a #

reader :: (r -> a) -> IdentityT * m a #

MonadReader r m => MonadReader r (ExceptT e m) 

Methods

ask :: ExceptT e m r #

local :: (r -> r) -> ExceptT e m a -> ExceptT e m a #

reader :: (r -> a) -> ExceptT e m a #

(Error e, MonadReader r m) => MonadReader r (ErrorT e m) 

Methods

ask :: ErrorT e m r #

local :: (r -> r) -> ErrorT e m a -> ErrorT e m a #

reader :: (r -> a) -> ErrorT e m a #

Monad m => MonadReader r (ReaderT * r m) 

Methods

ask :: ReaderT * r m r #

local :: (r -> r) -> ReaderT * r m a -> ReaderT * r m a #

reader :: (r -> a) -> ReaderT * r m a #

MonadReader r ((->) LiftedRep LiftedRep r) 

Methods

ask :: (LiftedRep -> LiftedRep) r r #

local :: (r -> r) -> (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r a #

reader :: (r -> a) -> (LiftedRep -> LiftedRep) r a #

MonadReader r' m => MonadReader r' (ContT * r m) 

Methods

ask :: ContT * r m r' #

local :: (r' -> r') -> ContT * r m a -> ContT * r m a #

reader :: (r' -> a) -> ContT * r m a #

(Monad m, Monoid w) => MonadReader r (RWST r w s m) 

Methods

ask :: RWST r w s m r #

local :: (r -> r) -> RWST r w s m a -> RWST r w s m a #

reader :: (r -> a) -> RWST r w s m a #

(Monad m, Monoid w) => MonadReader r (RWST r w s m) 

Methods

ask :: RWST r w s m r #

local :: (r -> r) -> RWST r w s m a -> RWST r w s m a #

reader :: (r -> a) -> RWST r w s m a #

ask :: MonadReader r m => m r #

Retrieves the monad environment.

asks #

Arguments

:: MonadReader r m 
=> (r -> a)

The selector function to apply to the environment.

-> m a 

Retrieves a function of the current environment.

newtype ReaderT k r (m :: k -> *) (a :: k) :: forall k. * -> (k -> *) -> k -> * #

The reader monad transformer, which adds a read-only environment to the given monad.

The return function ignores the environment, while >>= passes the inherited environment to both subcomputations.

Constructors

ReaderT 

Fields

Instances

Monad m => MonadReader r (ReaderT * r m) 

Methods

ask :: ReaderT * r m r #

local :: (r -> r) -> ReaderT * r m a -> ReaderT * r m a #

reader :: (r -> a) -> ReaderT * r m a #

MonadTrans (ReaderT * r) 

Methods

lift :: Monad m => m a -> ReaderT * r m a #

Monad m => Monad (ReaderT * r m) 

Methods

(>>=) :: ReaderT * r m a -> (a -> ReaderT * r m b) -> ReaderT * r m b #

(>>) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m b #

return :: a -> ReaderT * r m a #

fail :: String -> ReaderT * r m a #

Functor m => Functor (ReaderT * r m) 

Methods

fmap :: (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

(<$) :: a -> ReaderT * r m b -> ReaderT * r m a #

MonadFix m => MonadFix (ReaderT * r m) 

Methods

mfix :: (a -> ReaderT * r m a) -> ReaderT * r m a #

MonadFail m => MonadFail (ReaderT * r m) 

Methods

fail :: String -> ReaderT * r m a #

Applicative m => Applicative (ReaderT * r m) 

Methods

pure :: a -> ReaderT * r m a #

(<*>) :: ReaderT * r m (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

liftA2 :: (a -> b -> c) -> ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m c #

(*>) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m b #

(<*) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m a #

Representable m => Representable (ReaderT * e m) 

Associated Types

type Rep (ReaderT * e m :: * -> *) :: * #

Methods

tabulate :: (Rep (ReaderT * e m) -> a) -> ReaderT * e m a #

index :: ReaderT * e m a -> Rep (ReaderT * e m) -> a #

MonadZip m => MonadZip (ReaderT * r m) 

Methods

mzip :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m (a, b) #

mzipWith :: (a -> b -> c) -> ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m c #

munzip :: ReaderT * r m (a, b) -> (ReaderT * r m a, ReaderT * r m b) #

MonadIO m => MonadIO (ReaderT * r m) 

Methods

liftIO :: IO a -> ReaderT * r m a #

Alternative m => Alternative (ReaderT * r m) 

Methods

empty :: ReaderT * r m a #

(<|>) :: ReaderT * r m a -> ReaderT * r m a -> ReaderT * r m a #

some :: ReaderT * r m a -> ReaderT * r m [a] #

many :: ReaderT * r m a -> ReaderT * r m [a] #

MonadPlus m => MonadPlus (ReaderT * r m) 

Methods

mzero :: ReaderT * r m a #

mplus :: ReaderT * r m a -> ReaderT * r m a -> ReaderT * r m a #

Zip m => Zip (ReaderT * e m) 

Methods

zipWith :: (a -> b -> c) -> ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m c #

zip :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m (a, b) #

zap :: ReaderT * e m (a -> b) -> ReaderT * e m a -> ReaderT * e m b #

unzip :: ReaderT * e m (a, b) -> (ReaderT * e m a, ReaderT * e m b) #

Keyed m => Keyed (ReaderT * e m) 

Methods

mapWithKey :: (Key (ReaderT * e m) -> a -> b) -> ReaderT * e m a -> ReaderT * e m b #

Zip m => Zip (ReaderT * e m) 

Methods

zipWith :: (a -> b -> c) -> ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m c #

zip :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m (a, b) #

zap :: ReaderT * e m (a -> b) -> ReaderT * e m a -> ReaderT * e m b #

ZipWithKey m => ZipWithKey (ReaderT * e m) 

Methods

zipWithKey :: (Key (ReaderT * e m) -> a -> b -> c) -> ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m c #

zapWithKey :: ReaderT * e m (Key (ReaderT * e m) -> a -> b) -> ReaderT * e m a -> ReaderT * e m b #

Indexable m => Indexable (ReaderT * e m) 

Methods

index :: ReaderT * e m a -> Key (ReaderT * e m) -> a #

Lookup m => Lookup (ReaderT * e m) 

Methods

lookup :: Key (ReaderT * e m) -> ReaderT * e m a -> Maybe a #

PrimMonad m => PrimMonad (ReaderT * r m) 

Associated Types

type PrimState (ReaderT * r m :: * -> *) :: * #

Methods

primitive :: (State# (PrimState (ReaderT * r m)) -> (#TupleRep [RuntimeRep], LiftedRep, State# (PrimState (ReaderT * r m)), a#)) -> ReaderT * r m a #

Apply m => Apply (ReaderT * e m) 

Methods

(<.>) :: ReaderT * e m (a -> b) -> ReaderT * e m a -> ReaderT * e m b #

(.>) :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m b #

(<.) :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m a #

liftF2 :: (a -> b -> c) -> ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m c #

Bind m => Bind (ReaderT * e m) 

Methods

(>>-) :: ReaderT * e m a -> (a -> ReaderT * e m b) -> ReaderT * e m b #

join :: ReaderT * e m (ReaderT * e m a) -> ReaderT * e m a #

Functor m => MonoFunctor (ReaderT * r m a) 

Methods

omap :: (Element (ReaderT * r m a) -> Element (ReaderT * r m a)) -> ReaderT * r m a -> ReaderT * r m a #

Applicative m => MonoPointed (ReaderT * r m a) 

Methods

opoint :: Element (ReaderT * r m a) -> ReaderT * r m a #

type Rep (ReaderT * e m) 
type Rep (ReaderT * e m) = (e, Rep m)
type Key (ReaderT * e m) 
type Key (ReaderT * e m) = (e, Key m)
type PrimState (ReaderT * r m) 
type PrimState (ReaderT * r m) = PrimState m
type Element (ReaderT * r m a) 
type Element (ReaderT * r m a) = a

type Reader r = ReaderT * r Identity #

The parameterizable reader monad.

Computations are functions of a shared environment.

The return function ignores the environment, while >>= passes the inherited environment to both subcomputations.

Poly hierarchy

Bifunctor (since 0.10.0)

Mono hierarchy

toByteVector :: ByteString -> SVector Word8 Source #

Convert a ByteString into a storable Vector.

I/O

module Say

Concurrency

yieldThread :: MonadIO m => m () Source #

Originally yield.

waitAsync :: MonadIO m => Async a -> m a Source #

waitSTM for any MonadIO

Since: 1.0.0

pollAsync :: MonadIO m => Async a -> m (Maybe (Either SomeException a)) Source #

pollSTM for any MonadIO

Since: 1.0.0

linkAsync :: MonadIO m => Async a -> m () Source #

link generalized to any MonadIO

Since: 1.0.0

link2Async :: MonadIO m => Async a -> Async b -> m () Source #

link2 generalized to any MonadIO

Since: 1.0.0

Non-standard

List-like classes

map :: Functor f => (a -> b) -> f a -> f b Source #

readMay :: (Element c ~ Char, MonoFoldable c, Read a) => c -> Maybe a Source #

zip :: Zip f => forall a b. f a -> f b -> f (a, b) #

zip3 :: Zip3 f => forall a b c. f a -> f b -> f c -> f (a, b, c) #

zip4 :: Zip4 f => forall a b c d. f a -> f b -> f c -> f d -> f (a, b, c, d) #

zip5 :: Zip5 f => forall a b c d e. f a -> f b -> f c -> f d -> f e -> f (a, b, c, d, e) #

zip6 :: Zip6 f => forall a b c d e g. f a -> f b -> f c -> f d -> f e -> f g -> f (a, b, c, d, e, g) #

zip7 :: Zip7 f => forall a b c d e g h. f a -> f b -> f c -> f d -> f e -> f g -> f h -> f (a, b, c, d, e, g, h) #

unzip :: Zip f => forall a b. f (a, b) -> (f a, f b) #

unzip3 :: Zip3 f => forall a b c. f (a, b, c) -> (f a, f b, f c) #

unzip4 :: Zip4 f => forall a b c d. f (a, b, c, d) -> (f a, f b, f c, f d) #

unzip5 :: Zip5 f => forall a b c d e. f (a, b, c, d, e) -> (f a, f b, f c, f d, f e) #

unzip6 :: Zip6 f => forall a b c d e g. f (a, b, c, d, e, g) -> (f a, f b, f c, f d, f e, f g) #

unzip7 :: Zip7 f => forall a b c d e g h. f (a, b, c, d, e, g, h) -> (f a, f b, f c, f d, f e, f g, f h) #

zipWith :: Zip f => forall a b c. (a -> b -> c) -> f a -> f b -> f c #

zipWith3 :: Zip3 f => forall a b c d. (a -> b -> c -> d) -> f a -> f b -> f c -> f d #

zipWith4 :: Zip4 f => forall a b c d e. (a -> b -> c -> d -> e) -> f a -> f b -> f c -> f d -> f e #

zipWith5 :: Zip5 f => forall a b c d e g. (a -> b -> c -> d -> e -> g) -> f a -> f b -> f c -> f d -> f e -> f g #

zipWith6 :: Zip6 f => forall a b c d e g h. (a -> b -> c -> d -> e -> g -> h) -> f a -> f b -> f c -> f d -> f e -> f g -> f h #

zipWith7 :: Zip7 f => forall a b c d e g h i. (a -> b -> c -> d -> e -> g -> h -> i) -> f a -> f b -> f c -> f d -> f e -> f g -> f h -> f i #

hashNub :: (Hashable a, Eq a) => [a] -> [a] Source #

same behavior as nub, but requires Hashable & Eq and is O(n log n)

https://github.com/nh2/haskell-ordnub

ordNub :: Ord a => [a] -> [a] Source #

same behavior as nub, but requires Ord and is O(n log n)

https://github.com/nh2/haskell-ordnub

ordNubBy :: Ord b => (a -> b) -> (a -> a -> Bool) -> [a] -> [a] Source #

same behavior as nubBy, but requires Ord and is O(n log n)

https://github.com/nh2/haskell-ordnub

sortWith :: (Ord a, IsSequence c) => (Element c -> a) -> c -> c Source #

Sort elements using the user supplied function to project something out of each element. Inspired by http://hackage.haskell.org/packages/archive/base/latest/doc/html/GHC-Exts.html#v:sortWith.

repeat :: a -> [a] #

repeat x is an infinite list, with x the value of every element.

Set-like

(\\) :: SetContainer a => a -> a -> a infixl 9 Source #

An alias for difference.

intersect :: SetContainer a => a -> a -> a Source #

An alias for intersection.

Text-like

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: 2.1

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int

Since: 2.1

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Int8

Since: 2.1

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Show Int16

Since: 2.1

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Show Int32

Since: 2.1

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Show Int64

Since: 2.1

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Show Integer

Since: 2.1

Show Natural

Since: 4.8.0.0

Show Ordering 
Show Word

Since: 2.1

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show Word8

Since: 2.1

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Show Word16

Since: 2.1

Show Word32

Since: 2.1

Show Word64

Since: 2.1

Show CallStack

Since: 4.9.0.0

Show SomeTypeRep

Since: 4.10.0.0

Show Exp 

Methods

showsPrec :: Int -> Exp -> ShowS #

show :: Exp -> String #

showList :: [Exp] -> ShowS #

Show Match 

Methods

showsPrec :: Int -> Match -> ShowS #

show :: Match -> String #

showList :: [Match] -> ShowS #

Show Clause 
Show Pat 

Methods

showsPrec :: Int -> Pat -> ShowS #

show :: Pat -> String #

showList :: [Pat] -> ShowS #

Show Type 

Methods

showsPrec :: Int -> Type -> ShowS #

show :: Type -> String #

showList :: [Type] -> ShowS #

Show Dec 

Methods

showsPrec :: Int -> Dec -> ShowS #

show :: Dec -> String #

showList :: [Dec] -> ShowS #

Show Name 

Methods

showsPrec :: Int -> Name -> ShowS #

show :: Name -> String #

showList :: [Name] -> ShowS #

Show FunDep 
Show TyVarBndr 
Show InjectivityAnn 
Show Overlap 
Show DerivStrategy 
Show () 

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon

Since: 2.1

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module

Since: 4.9.0.0

Show TrName

Since: 4.9.0.0

Show Handle

Since: 4.1.0.0

Show ThreadId

Since: 4.2.0.0

Show HandleType

Since: 4.1.0.0

Methods

showsPrec :: Int -> HandleType -> ShowS #

show :: HandleType -> String #

showList :: [HandleType] -> ShowS #

Show Void

Since: 4.8.0.0

Methods

showsPrec :: Int -> Void -> ShowS #

show :: Void -> String #

showList :: [Void] -> ShowS #

Show Version 
Show BlockReason 
Show ThreadStatus 
Show BlockedIndefinitelyOnMVar

Since: 4.1.0.0

Show BlockedIndefinitelyOnSTM

Since: 4.1.0.0

Show Deadlock

Since: 4.1.0.0

Show AllocationLimitExceeded

Since: 4.7.1.0

Show CompactionFailed

Since: 4.10.0.0

Show AssertionFailed

Since: 4.1.0.0

Show SomeAsyncException

Since: 4.7.0.0

Show AsyncException

Since: 4.1.0.0

Show ArrayException

Since: 4.1.0.0

Show ExitCode 
Show IOErrorType

Since: 4.1.0.0

Show BufferMode 
Show Newline 
Show NewlineMode 
Show MaskingState 
Show IOException

Since: 4.1.0.0

Show ErrorCall

Since: 4.0.0.0

Show ArithException

Since: 4.0.0.0

Show Fixity 
Show Associativity 
Show SourceUnpackedness 
Show SourceStrictness 
Show DecidedStrictness 
Show WordPtr 
Show IntPtr 
Show GeneralCategory 
Show SomeException

Since: 3.0

Show SrcLoc 
Show IntSet 
Show ByteString 
Show ShortByteString 
Show ByteString 
Show Extension 
Show ForeignSrcLang 
Show NullError 

Methods

showsPrec :: Int -> NullError -> ShowS #

show :: NullError -> String #

showList :: [NullError] -> ShowS #

Show Doc 

Methods

showsPrec :: Int -> Doc -> ShowS #

show :: Doc -> String #

showList :: [Doc] -> ShowS #

Show TextDetails 
Show Style 

Methods

showsPrec :: Int -> Style -> ShowS #

show :: Style -> String #

showList :: [Style] -> ShowS #

Show Mode 

Methods

showsPrec :: Int -> Mode -> ShowS #

show :: Mode -> String #

showList :: [Mode] -> ShowS #

Show ModName 
Show PkgName 
Show Module 
Show OccName 
Show NameFlavour 
Show NameSpace 
Show Loc 

Methods

showsPrec :: Int -> Loc -> ShowS #

show :: Loc -> String #

showList :: [Loc] -> ShowS #

Show Info 

Methods

showsPrec :: Int -> Info -> ShowS #

show :: Info -> String #

showList :: [Info] -> ShowS #

Show ModuleInfo 
Show Fixity 
Show FixityDirection 
Show Lit 

Methods

showsPrec :: Int -> Lit -> ShowS #

show :: Lit -> String #

showList :: [Lit] -> ShowS #

Show Body 

Methods

showsPrec :: Int -> Body -> ShowS #

show :: Body -> String #

showList :: [Body] -> ShowS #

Show Guard 

Methods

showsPrec :: Int -> Guard -> ShowS #

show :: Guard -> String #

showList :: [Guard] -> ShowS #

Show Stmt 

Methods

showsPrec :: Int -> Stmt -> ShowS #

show :: Stmt -> String #

showList :: [Stmt] -> ShowS #

Show Range 

Methods

showsPrec :: Int -> Range -> ShowS #

show :: Range -> String #

showList :: [Range] -> ShowS #

Show DerivClause 
Show TypeFamilyHead 
Show TySynEqn 
Show FamFlavour 
Show Foreign 
Show Callconv 
Show Safety 
Show Pragma 
Show Inline 
Show RuleMatch 
Show Phases 
Show RuleBndr 
Show AnnTarget 
Show SourceUnpackedness 
Show SourceStrictness 
Show DecidedStrictness 
Show Con 

Methods

showsPrec :: Int -> Con -> ShowS #

show :: Con -> String #

showList :: [Con] -> ShowS #

Show Bang 

Methods

showsPrec :: Int -> Bang -> ShowS #

show :: Bang -> String #

showList :: [Bang] -> ShowS #

Show PatSynDir 
Show PatSynArgs 
Show FamilyResultSig 
Show TyLit 

Methods

showsPrec :: Int -> TyLit -> ShowS #

show :: TyLit -> String #

showList :: [TyLit] -> ShowS #

Show Role 

Methods

showsPrec :: Int -> Role -> ShowS #

show :: Role -> String #

showList :: [Role] -> ShowS #

Show AnnLookup 
Show Padding 

Methods

showsPrec :: Int -> Padding -> ShowS #

show :: Padding -> String #

showList :: [Padding] -> ShowS #

Show DateFormatSpec 

Methods

showsPrec :: Int -> DateFormatSpec -> ShowS #

show :: DateFormatSpec -> String #

showList :: [DateFormatSpec] -> ShowS #

Show ZonedTime 
Show LocalTime 
Show a => Show [a]

Since: 2.1

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a)

Since: 2.0.1

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show (Ptr a)

Since: 2.1

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show (FunPtr a)

Since: 2.1

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show p => Show (Par1 p) 

Methods

showsPrec :: Int -> Par1 p -> ShowS #

show :: Par1 p -> String #

showList :: [Par1 p] -> ShowS #

Show (ForeignPtr a)

Since: 2.1

HasResolution a => Show (Fixed a)

Since: 2.1

Methods

showsPrec :: Int -> Fixed a -> ShowS #

show :: Fixed a -> String #

showList :: [Fixed a] -> ShowS #

Show a => Show (Min a) 

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Show a => Show (Max a) 

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show m => Show (WrappedMonoid m) 
Show a => Show (Option a) 

Methods

showsPrec :: Int -> Option a -> ShowS #

show :: Option a -> String #

showList :: [Option a] -> ShowS #

Show a => Show (NonEmpty a) 

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Show a => Show (ZipList a) 

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: 4.8.0.0

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Show a => Show (Down a) 

Methods

showsPrec :: Int -> Down a -> ShowS #

show :: Down a -> String #

showList :: [Down a] -> ShowS #

Show a => Show (Vector a) 

Methods

showsPrec :: Int -> Vector a -> ShowS #

show :: Vector a -> String #

showList :: [Vector a] -> ShowS #

Show a => Show (HashSet a) 

Methods

showsPrec :: Int -> HashSet a -> ShowS #

show :: HashSet a -> String #

showList :: [HashSet a] -> ShowS #

Show a => Show (Set a) 

Methods

showsPrec :: Int -> Set a -> ShowS #

show :: Set a -> String #

showList :: [Set a] -> ShowS #

Show a => Show (Seq a) 

Methods

showsPrec :: Int -> Seq a -> ShowS #

show :: Seq a -> String #

showList :: [Seq a] -> ShowS #

Show a => Show (IntMap a) 

Methods

showsPrec :: Int -> IntMap a -> ShowS #

show :: IntMap a -> String #

showList :: [IntMap a] -> ShowS #

Show a => Show (Tree a) 

Methods

showsPrec :: Int -> Tree a -> ShowS #

show :: Tree a -> String #

showList :: [Tree a] -> ShowS #

Show a => Show (ViewL a) 

Methods

showsPrec :: Int -> ViewL a -> ShowS #

show :: ViewL a -> String #

showList :: [ViewL a] -> ShowS #

Show a => Show (ViewR a) 

Methods

showsPrec :: Int -> ViewR a -> ShowS #

show :: ViewR a -> String #

showList :: [ViewR a] -> ShowS #

Show a => Show (DList a) 

Methods

showsPrec :: Int -> DList a -> ShowS #

show :: DList a -> String #

showList :: [DList a] -> ShowS #

Show a => Show (Hashed a) 

Methods

showsPrec :: Int -> Hashed a -> ShowS #

show :: Hashed a -> String #

showList :: [Hashed a] -> ShowS #

Show mono => Show (NonNull mono) 

Methods

showsPrec :: Int -> NonNull mono -> ShowS #

show :: NonNull mono -> String #

showList :: [NonNull mono] -> ShowS #

Show (Doc a) 

Methods

showsPrec :: Int -> Doc a -> ShowS #

show :: Doc a -> String #

showList :: [Doc a] -> ShowS #

Show a => Show (AnnotDetails a) 
Show a => Show (Span a) 

Methods

showsPrec :: Int -> Span a -> ShowS #

show :: Span a -> String #

showList :: [Span a] -> ShowS #

(Show a, Storable a) => Show (Vector a) 

Methods

showsPrec :: Int -> Vector a -> ShowS #

show :: Vector a -> String #

showList :: [Vector a] -> ShowS #

(Show a, Prim a) => Show (Vector a) 

Methods

showsPrec :: Int -> Vector a -> ShowS #

show :: Vector a -> String #

showList :: [Vector a] -> ShowS #

(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Show (V1 k p) 

Methods

showsPrec :: Int -> V1 k p -> ShowS #

show :: V1 k p -> String #

showList :: [V1 k p] -> ShowS #

Show (U1 k p)

Since: 4.9.0.0

Methods

showsPrec :: Int -> U1 k p -> ShowS #

show :: U1 k p -> String #

showList :: [U1 k p] -> ShowS #

Show (TypeRep k a) 

Methods

showsPrec :: Int -> TypeRep k a -> ShowS #

show :: TypeRep k a -> String #

showList :: [TypeRep k a] -> ShowS #

(Show a, Show b) => Show (a, b)

Since: 2.1

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

Show (ST s a)

Since: 2.1

Methods

showsPrec :: Int -> ST s a -> ShowS #

show :: ST s a -> String #

showList :: [ST s a] -> ShowS #

(Show b, Show a) => Show (Arg a b) 

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

Show (Proxy k s)

Since: 4.7.0.0

Methods

showsPrec :: Int -> Proxy k s -> ShowS #

show :: Proxy k s -> String #

showList :: [Proxy k s] -> ShowS #

(Show k, Show v) => Show (HashMap k v) 

Methods

showsPrec :: Int -> HashMap k v -> ShowS #

show :: HashMap k v -> String #

showList :: [HashMap k v] -> ShowS #

(Show k, Show a) => Show (Map k a) 

Methods

showsPrec :: Int -> Map k a -> ShowS #

show :: Map k a -> String #

showList :: [Map k a] -> ShowS #

(Show1 m, Show a) => Show (ListT m a) 

Methods

showsPrec :: Int -> ListT m a -> ShowS #

show :: ListT m a -> String #

showList :: [ListT m a] -> ShowS #

(Show1 m, Show a) => Show (MaybeT m a) 

Methods

showsPrec :: Int -> MaybeT m a -> ShowS #

show :: MaybeT m a -> String #

showList :: [MaybeT m a] -> ShowS #

Show (f p) => Show (Rec1 k f p) 

Methods

showsPrec :: Int -> Rec1 k f p -> ShowS #

show :: Rec1 k f p -> String #

showList :: [Rec1 k f p] -> ShowS #

Show (URec k Char p) 

Methods

showsPrec :: Int -> URec k Char p -> ShowS #

show :: URec k Char p -> String #

showList :: [URec k Char p] -> ShowS #

Show (URec k Double p) 

Methods

showsPrec :: Int -> URec k Double p -> ShowS #

show :: URec k Double p -> String #

showList :: [URec k Double p] -> ShowS #

Show (URec k Float p) 

Methods

showsPrec :: Int -> URec k Float p -> ShowS #

show :: URec k Float p -> String #

showList :: [URec k Float p] -> ShowS #

Show (URec k Int p) 

Methods

showsPrec :: Int -> URec k Int p -> ShowS #

show :: URec k Int p -> String #

showList :: [URec k Int p] -> ShowS #

Show (URec k Word p) 

Methods

showsPrec :: Int -> URec k Word p -> ShowS #

show :: URec k Word p -> String #

showList :: [URec k Word p] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

Show a => Show (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Since: 4.8.0.0

Methods

showsPrec :: Int -> Const k a b -> ShowS #

show :: Const k a b -> String #

showList :: [Const k a b] -> ShowS #

Show ((:~:) k a b) 

Methods

showsPrec :: Int -> (k :~: a) b -> ShowS #

show :: (k :~: a) b -> String #

showList :: [(k :~: a) b] -> ShowS #

Show (p a a) => Show (Join k p a) 

Methods

showsPrec :: Int -> Join k p a -> ShowS #

show :: Join k p a -> String #

showList :: [Join k p a] -> ShowS #

(Show1 f, Show a) => Show (IdentityT * f a) 

Methods

showsPrec :: Int -> IdentityT * f a -> ShowS #

show :: IdentityT * f a -> String #

showList :: [IdentityT * f a] -> ShowS #

(Show e, Show1 m, Show a) => Show (ErrorT e m a) 

Methods

showsPrec :: Int -> ErrorT e m a -> ShowS #

show :: ErrorT e m a -> String #

showList :: [ErrorT e m a] -> ShowS #

(Show w, Show1 m, Show a) => Show (WriterT w m a) 

Methods

showsPrec :: Int -> WriterT w m a -> ShowS #

show :: WriterT w m a -> String #

showList :: [WriterT w m a] -> ShowS #

(Show w, Show1 m, Show a) => Show (WriterT w m a) 

Methods

showsPrec :: Int -> WriterT w m a -> ShowS #

show :: WriterT w m a -> String #

showList :: [WriterT w m a] -> ShowS #

Show b => Show (Tagged k s b) 

Methods

showsPrec :: Int -> Tagged k s b -> ShowS #

show :: Tagged k s b -> String #

showList :: [Tagged k s b] -> ShowS #

Show c => Show (K1 k i c p) 

Methods

showsPrec :: Int -> K1 k i c p -> ShowS #

show :: K1 k i c p -> String #

showList :: [K1 k i c p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:+:) k f g p) 

Methods

showsPrec :: Int -> (k :+: f) g p -> ShowS #

show :: (k :+: f) g p -> String #

showList :: [(k :+: f) g p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:*:) k f g p) 

Methods

showsPrec :: Int -> (k :*: f) g p -> ShowS #

show :: (k :*: f) g p -> String #

showList :: [(k :*: f) g p] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Product * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Product * f g a -> ShowS #

show :: Product * f g a -> String #

showList :: [Product * f g a] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Sum * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Sum * f g a -> ShowS #

show :: Sum * f g a -> String #

showList :: [Sum * f g a] -> ShowS #

Show ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

showsPrec :: Int -> (k1 :~~: k2) a b -> ShowS #

show :: (k1 :~~: k2) a b -> String #

showList :: [(k1 :~~: k2) a b] -> ShowS #

Show (f p) => Show (M1 k i c f p) 

Methods

showsPrec :: Int -> M1 k i c f p -> ShowS #

show :: M1 k i c f p -> String #

showList :: [M1 k i c f p] -> ShowS #

Show (f (g p)) => Show ((:.:) k2 k1 f g p) 

Methods

showsPrec :: Int -> (k2 :.: k1) f g p -> ShowS #

show :: (k2 :.: k1) f g p -> String #

showList :: [(k2 :.: k1) f g p] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Compose * * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Compose * * f g a -> ShowS #

show :: Compose * * f g a -> String #

showList :: [Compose * * f g a] -> ShowS #

Show (p a b) => Show (WrappedBifunctor k1 k2 p a b) 

Methods

showsPrec :: Int -> WrappedBifunctor k1 k2 p a b -> ShowS #

show :: WrappedBifunctor k1 k2 p a b -> String #

showList :: [WrappedBifunctor k1 k2 p a b] -> ShowS #

Show (g b) => Show (Joker k2 k1 g a b) 

Methods

showsPrec :: Int -> Joker k2 k1 g a b -> ShowS #

show :: Joker k2 k1 g a b -> String #

showList :: [Joker k2 k1 g a b] -> ShowS #

Show (p b a) => Show (Flip k1 k2 p a b) 

Methods

showsPrec :: Int -> Flip k1 k2 p a b -> ShowS #

show :: Flip k1 k2 p a b -> String #

showList :: [Flip k1 k2 p a b] -> ShowS #

Show (f a) => Show (Clown k1 k2 f a b) 

Methods

showsPrec :: Int -> Clown k1 k2 f a b -> ShowS #

show :: Clown k1 k2 f a b -> String #

showList :: [Clown k1 k2 f a b] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show (q a b), Show (p a b)) => Show (Sum k1 k2 p q a b) 

Methods

showsPrec :: Int -> Sum k1 k2 p q a b -> ShowS #

show :: Sum k1 k2 p q a b -> String #

showList :: [Sum k1 k2 p q a b] -> ShowS #

(Show (g a b), Show (f a b)) => Show (Product k1 k2 f g a b) 

Methods

showsPrec :: Int -> Product k1 k2 f g a b -> ShowS #

show :: Product k1 k2 f g a b -> String #

showList :: [Product k1 k2 f g a b] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

Show (f (p a b)) => Show (Tannen k1 k2 k3 f p a b) 

Methods

showsPrec :: Int -> Tannen k1 k2 k3 f p a b -> ShowS #

show :: Tannen k1 k2 k3 f p a b -> String #

showList :: [Tannen k1 k2 k3 f p a b] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

Show (p (f a) (g b)) => Show (Biff k1 k2 k3 k4 p f g a b) 

Methods

showsPrec :: Int -> Biff k1 k2 k3 k4 p f g a b -> ShowS #

show :: Biff k1 k2 k3 k4 p f g a b -> String #

showList :: [Biff k1 k2 k3 k4 p f g a b] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

tshow :: Show a => a -> Text Source #

tlshow :: Show a => a -> LText Source #

Case conversion

charToLower :: Char -> Char Source #

Convert a character to lower case.

Character-based case conversion is lossy in comparison to string-based toLower. For instance, İ will be converted to i, instead of i̇.

charToUpper :: Char -> Char Source #

Convert a character to upper case.

Character-based case conversion is lossy in comparison to string-based toUpper. For instance, ß won't be converted to SS.

IO

readFile :: MonadIO m => FilePath -> m ByteString Source #

Strictly read a file into a ByteString.

Since: 1.2.0

readFileUtf8 :: MonadIO m => FilePath -> m Text Source #

Strictly read a file into a Text using a UTF-8 character encoding. In the event of a character encoding error, a Unicode replacement character will be used (a.k.a., lenientDecode).

Since: 1.2.0

writeFile :: MonadIO m => FilePath -> ByteString -> m () Source #

Write a ByteString to a file.

Since: 1.2.0

writeFileUtf8 :: MonadIO m => FilePath -> Text -> m () Source #

Write a Text to a file using a UTF-8 character encoding.

Since: 1.2.0

hGetContents :: MonadIO m => Handle -> m ByteString Source #

Strictly read the contents of the given Handle into a ByteString.

Since: 1.2.0

hPut :: MonadIO m => Handle -> ByteString -> m () Source #

Write a ByteString to the given Handle.

Since: 1.2.0

hGetChunk :: MonadIO m => Handle -> m ByteString Source #

Read a single chunk of data as a ByteString from the given Handle.

Under the surface, this uses hGetSome with the default chunk size.

Since: 1.2.0

print :: (Show a, MonadIO m) => a -> m () Source #

putChar :: MonadIO m => Char -> m () Source #

Write a character to stdout

Uses system locale settings

Since: 1.3.1

putStr :: MonadIO m => Text -> m () Source #

Write a Text to stdout

Uses system locale settings

Since: 1.3.1

putStrLn :: MonadIO m => Text -> m () Source #

Write a Text followed by a newline to stdout

Uses system locale settings

Since: 1.3.1

getChar :: MonadIO m => m Char Source #

Read a character from stdin

Uses system locale settings

Since: 1.3.1

getLine :: MonadIO m => m Text Source #

Read a line from stdin

Uses system locale settings

Since: 1.3.1

getContents :: MonadIO m => m LText Source #

Read all input from stdin into a lazy Text (LText)

Uses system locale settings

Since: 1.3.1

interact :: MonadIO m => (LText -> LText) -> m () Source #

Takes a function of type 'LText -> LText' and passes all input on stdin to it, then prints result to stdout

Uses lazy IO Uses system locale settings

Since: 1.3.1

Difference lists

data DList a :: * -> * #

A difference list is a function that, given a list, returns the original contents of the difference list prepended to the given list.

This structure supports O(1) append and snoc operations on lists, making it very useful for append-heavy uses (esp. left-nested uses of ++), such as logging and pretty printing.

Here is an example using DList as the state type when printing a tree with the Writer monad:

import Control.Monad.Writer
import Data.DList

data Tree a = Leaf a | Branch (Tree a) (Tree a)

flatten_writer :: Tree x -> DList x
flatten_writer = snd . runWriter . flatten
    where
      flatten (Leaf x)     = tell (singleton x)
      flatten (Branch x y) = flatten x >> flatten y

Instances

Monad DList 

Methods

(>>=) :: DList a -> (a -> DList b) -> DList b #

(>>) :: DList a -> DList b -> DList b #

return :: a -> DList a #

fail :: String -> DList a #

Functor DList 

Methods

fmap :: (a -> b) -> DList a -> DList b #

(<$) :: a -> DList b -> DList a #

Applicative DList 

Methods

pure :: a -> DList a #

(<*>) :: DList (a -> b) -> DList a -> DList b #

liftA2 :: (a -> b -> c) -> DList a -> DList b -> DList c #

(*>) :: DList a -> DList b -> DList b #

(<*) :: DList a -> DList b -> DList a #

Foldable DList 

Methods

fold :: Monoid m => DList m -> m #

foldMap :: Monoid m => (a -> m) -> DList a -> m #

foldr :: (a -> b -> b) -> b -> DList a -> b #

foldr' :: (a -> b -> b) -> b -> DList a -> b #

foldl :: (b -> a -> b) -> b -> DList a -> b #

foldl' :: (b -> a -> b) -> b -> DList a -> b #

foldr1 :: (a -> a -> a) -> DList a -> a #

foldl1 :: (a -> a -> a) -> DList a -> a #

toList :: DList a -> [a] #

null :: DList a -> Bool #

length :: DList a -> Int #

elem :: Eq a => a -> DList a -> Bool #

maximum :: Ord a => DList a -> a #

minimum :: Ord a => DList a -> a #

sum :: Num a => DList a -> a #

product :: Num a => DList a -> a #

Alternative DList 

Methods

empty :: DList a #

(<|>) :: DList a -> DList a -> DList a #

some :: DList a -> DList [a] #

many :: DList a -> DList [a] #

MonadPlus DList 

Methods

mzero :: DList a #

mplus :: DList a -> DList a -> DList a #

IsList (DList a) 

Associated Types

type Item (DList a) :: * #

Methods

fromList :: [Item (DList a)] -> DList a #

fromListN :: Int -> [Item (DList a)] -> DList a #

toList :: DList a -> [Item (DList a)] #

Eq a => Eq (DList a) 

Methods

(==) :: DList a -> DList a -> Bool #

(/=) :: DList a -> DList a -> Bool #

Ord a => Ord (DList a) 

Methods

compare :: DList a -> DList a -> Ordering #

(<) :: DList a -> DList a -> Bool #

(<=) :: DList a -> DList a -> Bool #

(>) :: DList a -> DList a -> Bool #

(>=) :: DList a -> DList a -> Bool #

max :: DList a -> DList a -> DList a #

min :: DList a -> DList a -> DList a #

Read a => Read (DList a) 
Show a => Show (DList a) 

Methods

showsPrec :: Int -> DList a -> ShowS #

show :: DList a -> String #

showList :: [DList a] -> ShowS #

(~) * a Char => IsString (DList a) 

Methods

fromString :: String -> DList a #

Semigroup (DList a) 

Methods

(<>) :: DList a -> DList a -> DList a #

sconcat :: NonEmpty (DList a) -> DList a #

stimes :: Integral b => b -> DList a -> DList a #

Monoid (DList a) 

Methods

mempty :: DList a #

mappend :: DList a -> DList a -> DList a #

mconcat :: [DList a] -> DList a #

NFData a => NFData (DList a) 

Methods

rnf :: DList a -> () #

type Item (DList a) 
type Item (DList a) = a
type Index (DList a) 
type Index (DList a) = Int
type Element (DList a) 
type Element (DList a) = a

asDList :: DList a -> DList a Source #

Force type to a DList

Since 0.11.0

applyDList :: DList a -> [a] -> [a] Source #

Synonym for apply

Since 0.11.0

Exceptions

Force types

Helper functions for situations where type inferer gets confused.

asList :: [a] -> [a] Source #

asMap :: Map k v -> Map k v Source #

asSet :: Set a -> Set a Source #