cleveland-0.1.2: Testing framework for Morley.
Safe HaskellNone
LanguageHaskell2010

Test.Cleveland.Internal.Actions

Description

Cleveland actions.

Synopsis

Documentation

class Functor m => MonadOps m where Source #

Typeclass for monads where operations-related actions can occur.

This is implemented for MonadCleveland and batch context.

Has Functor as a superclass constraint for convenience, all the related methods require it.

Methods

withOpsCap :: (ClevelandOpsImpl m -> m a) -> m a Source #

Obtain ClevelandOpsImpl suitable for the current "monad".

In CPS style, because the "monad" can be actually not a monad, so it can't work like ask for ReaderT.

Instances

Instances details
MonadOps ClevelandOpsBatch Source # 
Instance details

Defined in Test.Cleveland.Internal.Actions

(HasClevelandCaps caps, ClevelandBaseMonad caps ~ m) => MonadOps (ReaderT caps m) Source # 
Instance details

Defined in Test.Cleveland.Internal.Actions

Methods

withOpsCap :: (ClevelandOpsImpl (ReaderT caps m) -> ReaderT caps m a) -> ReaderT caps m a Source #

withSender :: MonadCleveland caps m => Address -> m a -> m a Source #

Update the current sender on whose behalf transfers and originations are invoked.

withMoneybag :: MonadCleveland caps m => Address -> m a -> m a Source #

Update the current moneybag that transfers money on the newly created addresses. For the rare occasions when this is necessary.

runIO :: (HasCallStack, MonadCleveland caps m) => IO res -> m res Source #

Runs an IO action.

resolveAddress :: (HasCallStack, MonadCleveland caps m) => AliasHint -> m Address Source #

Get the address of the implicit account / contract associated with the given alias hint.

refillable :: MonadCleveland caps m => m Address -> m Address Source #

Simple combinator that marks address as "refillable".

If a refillable address lacks funds for the next operation, some funds will automatically be transferred to it.

newAddress :: (HasCallStack, MonadCleveland caps m) => SpecificOrDefaultAliasHint -> m Address Source #

If the given alias is already associated with an existing address, that address will be reused and returned. Otherwise, generate a new secret key and record it with given alias.

If the account has too low of a balance, a small amount of XTZ will be transferred to it.

Notes:

  • By default, the XTZ is transferred from the account associated with the moneybag alias. This can be overriden with the --cleveland-moneybag-alias command line option, the TASTY_CLEVELAND_MONEYBAG_ALIAS env var, or withMoneybag.
  • Beware that if an "alias prefix" is set, it'll be prepended to the given alias hint. An "alias prefix" can be set using the --cleveland-alias-prefix command line option, the TASTY_CLEVELAND_ALIAS_PREFIX env var, or with setAliasPrefix. > do > addr1 <- newAddress "alias" > addr2 <- resolveAddress $ mkAlias "prefix.alias" > addr1 @== addr2

newFreshAddress :: (HasCallStack, MonadCleveland caps m) => SpecificOrDefaultAliasHint -> m Address Source #

Generate a new secret key and record it with given alias. If the alias is already known, the key will be overwritten. The address is guaranteed to be fresh, i. e. no operations on it have been made.

Notes:

  • Beware that if an "alias prefix" is set, it'll be prepended to the given alias. An "alias prefix" can be set using the --cleveland-alias-prefix command line option, the TASTY_CLEVELAND_ALIAS_PREFIX env var, or with setAliasPrefix. > do > addr1 <- newFreshAddress "alias" > addr2 <- resolveAddress $ mkAlias "prefix.alias" > addr1 @== addr2

enumAliasHints :: forall n n'. (SingIPeano n, IsoNatPeano n n') => AliasHint -> SizedList n SpecificOrDefaultAliasHint Source #

Create a list of similarly named SpecificAliasHints.

For example,

>>> enumAliasHints @2 "operator" `isEquivalentTo` "operator-0" :< "operator-1" :< Nil
True

signBytes :: (HasCallStack, MonadCleveland caps m) => ByteString -> Address -> m Signature Source #

Get the signature of the preapplied operation.

signBinary :: (HasCallStack, BytesLike bs, MonadCleveland caps m) => bs -> Address -> m (TSignature bs) Source #

Type-safer version of signBytes.

originate :: forall cp st vd m. (HasCallStack, MonadOps m) => OriginateData cp st vd -> m (ContractHandle cp st vd) Source #

Lorentz version for origination.

By default, the sender is the account associated with the moneybag alias. This can be overriden with the --cleveland-moneybag-alias command line option, the TASTY_CLEVELAND_MONEYBAG_ALIAS env var, or withSender.

originateSimple :: forall cp st vd m. (HasCallStack, MonadOps m) => AliasHint -> st -> Contract cp st vd -> m (ContractHandle cp st vd) Source #

A simplified version of the originate command. The contract will have 0 balance.

originateUntyped :: (HasCallStack, MonadOps m) => UntypedOriginateData -> m Address Source #

Originate a new raw Michelson contract with given data.

originateUntypedSimple :: (HasCallStack, MonadOps m) => AliasHint -> Value -> Contract -> m Address Source #

A simplified version of the originateUntyped command. The contract will have 0 balance.

originateTypedSimple :: forall cp st vd m. (HasCallStack, MonadOps m, NiceParameter cp, NiceStorage st, NiceViewsDescriptor vd) => AliasHint -> st -> Contract (ToT cp) (ToT st) -> m (ContractHandle cp st vd) Source #

Like originateUntypedSimple, but accepts typed contract and initial storage as a Haskell value.

originateLarge :: forall param st vd m caps. (HasCallStack, MonadCleveland caps m) => OriginateData param st vd -> m (ContractHandle param st vd) Source #

Lorentz version for large origination.

originateLargeSimple :: forall param st vd m caps. (HasCallStack, MonadCleveland caps m) => AliasHint -> st -> Contract param st vd -> m (ContractHandle param st vd) Source #

A simplified version of the originateLarge command. The contract will have 0 balance.

originateLargeUntyped :: (HasCallStack, MonadCleveland caps m) => UntypedOriginateData -> m Address Source #

Originate a new Michelson contract that doesn't fit into the origination size limit, by executing multiple operation steps.

This operation cannot be batched (it simply may not fit).

originateLargeUntypedSimple :: (HasCallStack, MonadCleveland caps m) => AliasHint -> Value -> Contract -> m Address Source #

A simplified version of the originateLargeUntyped command. The contract will have 0 balance.

transfer :: (HasCallStack, MonadOps m) => TransferData -> m () Source #

Base method for making a transfer.

Avoid using this method in favour of transferMoney and call, unless you need the semantics of both in one operation.

transferMoney :: (HasCallStack, MonadOps m, ToAddress addr) => addr -> Mutez -> m () Source #

Simply transfer money to an address.

This assumes that target address is either an implicit address or has a default entrypoint with a unit argument; otherwise the call fails.

call :: forall param vd addr m epRef epArg. (HasCallStack, MonadOps m, ToTAddress param vd addr, HasEntrypointArg param epRef epArg, IsoValue epArg, Typeable epArg) => addr -> epRef -> epArg -> m () Source #

Call a certain entrypoint of the given contract.

By default, the sender is the account associated with the moneybag alias. This can be overriden with the --cleveland-moneybag-alias command line option, the TASTY_CLEVELAND_MONEYBAG_ALIAS env var, or withSender.

inBatch :: (HasCallStack, MonadCleveland caps m) => ClevelandOpsBatch a -> m a Source #

Run operations in a batch. Best used with the ApplicativeDo GHC extension.

Example:


contract <- inBatch $ do
  contract <- originate ...
  for_ [1..3] i ->
    transfer ...
  return contract

Batched operations should be applied to chain faster, but note that batches have their own limits. For instance, at the moment of writing, the gas limit on a batch is 10x of gas limit applied to a single operation.

A context of a batch is only Applicative, not Monad. This means that:

  • Return values of one function cannot be passed to another function in the same batch, it can only be returned;
  • Sometimes the compiler does not recognize that only Applicative context is required, in case of any issues with that - follow the error messages.

importUntypedContract :: (HasCallStack, MonadCleveland caps m) => FilePath -> m Contract Source #

Import an untyped contract from file.

importContract :: (HasCallStack, NiceParameter param, NiceStorage st, NiceViewsDescriptor vd, DemoteViewsDescriptor vd, MonadCleveland caps m) => FilePath -> m (Contract param st vd) Source #

Import a contract from file.

The compiler must be able to infer the types of parameter, storage and views. In case there are no views or you don't care, you can use noViews.

noViews :: forall k1 k2 contract (cp :: k1) (st :: k2). contract cp st () -> contract cp st () #

comment :: (HasCallStack, MonadCleveland caps m) => Text -> m () Source #

Print the given string verbatim as a comment. At the moment, this is a no-op in emulator tests.

getBalance :: (HasCallStack, MonadCleveland caps m, ToAddress addr) => addr -> m Mutez Source #

Get the balance of the given address.

getStorage :: forall st addr caps m. (HasCallStack, MonadCleveland caps m, ToStorageType st addr, IsoValue (AsRPC st)) => addr -> m (AsRPC st) Source #

Retrieve a contract's storage in its "RPC representation" (i.e., all its big_maps will be replaced by big_map IDs).

If the storage is of a user-defined type, then deriveRPC / deriveManyRPC should be used to create an RPC representation of the storage type.

data MyStorage = MyStorage { field1 :: Natural, field2 :: BigMap Integer MText }
deriveRPC "MyStorage"

getFullStorage :: forall st addr caps m. (HasCallStack, MonadEmulated caps m, ToStorageType st addr) => addr -> m st Source #

Retrieve a contract's full storage, including the contents of its big_maps.

This function can only be used in emulator-only tests.

getSomeStorage :: forall addr caps m. (HasCallStack, MonadCleveland caps m, ToAddress addr) => addr -> m SomeAnnotatedValue Source #

Similar to getStorage, but doesn't require knowing the storage type in advance.

Use the optics in AnnotatedValue to read data from the storage.

getAllBigMapValues :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NiceUnpackedValue v) => BigMapId k v -> m [v] Source #

Like getAllBigMapValuesMaybe, but fails the tests instead of returning Nothing.

getAllBigMapValuesMaybe :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NiceUnpackedValue v) => BigMapId k v -> m (Maybe [v]) Source #

Retrieve all big_map values, given a big_map ID. Returns Nothing when the big_map ID does not exist.

getBigMapSize :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NiceUnpackedValue v) => BigMapId k v -> m Natural Source #

Like getBigMapSizeMaybe, but fails the tests instead of returning Nothing.

getBigMapSizeMaybe :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NiceUnpackedValue v) => BigMapId k v -> m (Maybe Natural) Source #

Retrieve a big_map size, given a big_map ID. Returns Nothing when the big_map ID does not exist.

O(n), because it's implemented with getBigMapValues.

getBigMapValueMaybe :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NicePackedValue k, NiceUnpackedValue v) => BigMapId k v -> k -> m (Maybe v) Source #

Retrieve a big_map value, given a big_map ID and a key. Returns Nothing when the big_map ID does not exist, or it exists but does not contain the given key.

getBigMapValue :: forall k v caps m. (HasCallStack, MonadCleveland caps m, NiceComparable k, NicePackedValue k, NiceUnpackedValue v, Buildable k) => BigMapId k v -> k -> m v Source #

Like getBigMapValueMaybe, but fails the tests instead of returning Nothing.

getMorleyLogs :: forall a caps m. MonadEmulated caps m => m a -> m (LogsInfo, a) Source #

Returns the result of the action with the logs it produced. Logs are messages printed by the Lorentz instruction printComment.

This function can be combined either with lens-based accessors or helper functions to get more specific information about logs.

Examples:

(logsInfo, _) <- getMorleyLogs scenario
logsInfo ^.. each . logsL == [MorleyLogs ["log"], MorleyLogs ["log2"]]
logsInfo ^.. each . filterLogsByAddrL addr == [MorleyLogs ["log"]]
(logsInfo, _) <- getMorleyLogs scenario
collectLogs logsInfo == MorleyLogs ["log", "log2"]
logsForAddress logsInfo == [MorleyLogs ["log"]]

getMorleyLogs_ :: MonadEmulated caps m => m () -> m LogsInfo Source #

Version of getMorleyLogs for actions that don't return a result.

getPublicKey :: (HasCallStack, MonadCleveland caps m) => Address -> m PublicKey Source #

Get the public key associated with given address. Fail if given address is not an implicit account.

getChainId :: (HasCallStack, MonadCleveland caps m) => m ChainId Source #

Get the chain's ChainId.

advanceTime :: forall unit caps m. (HasCallStack, MonadCleveland caps m, KnownDivRat unit Second) => Time unit -> m () Source #

Advance at least the given amount of time, or until a new block is baked, whichever happens last.

On a real network, this is implemented using threadDelay, so it's advisable to use small amounts of time only.

advanceLevel :: forall caps m. (HasCallStack, MonadCleveland caps m) => Natural -> m () Source #

Wait till the provided number of levels is past.

advanceToLevel :: forall caps m. (HasCallStack, MonadCleveland caps m) => Natural -> m () Source #

Wait till the provided level is reached.

getNow :: (HasCallStack, MonadCleveland caps m) => m Timestamp Source #

Get the timestamp observed by the last block to be baked.

getLevel :: (HasCallStack, MonadCleveland caps m) => m Natural Source #

Get the current level observed by the last block to be baked.

getApproximateBlockInterval :: (HasCallStack, MonadCleveland caps m) => m (Time Second) Source #

Get approximate block interval in seconds. Note, that this value is minimal bound and real intervals can be larger, see http://tezos.gitlab.io/active/consensus.html#minimal-block-delay-function for more information about block delays.

runCode :: (HasCallStack, MonadCleveland caps m, HasRPCRepr st, IsoValue (AsRPC st)) => RunCode cp st vd -> m (AsRPC st) Source #

Execute a contract's code without originating it. The chain's state will not be modified.

Notes:

  • If the contract's code emits operations, they will not be executed.
  • The sender's account won't be debited.
  • When running an _originated_ contract, the BALANCE instruction returns the sum of the contract's balance before the transfer operation + the amount of tz being transferred. In other words, this invariant holds: BALANCE >= AMOUNT. However, since runCode allows overriding the BALANCE instruction, then this invariant no longer holds. It's possible that BALANCE < AMOUNT.

branchout :: forall caps m. MonadEmulated caps m => [(Text, m ())] -> m () Source #

Execute multiple testing scenarios independently.

  • Actions performed before branchout will be observed by all branches.
  • Actions performed in branches will _not_ be observed by any actions performed after branchout.
  • Actions performed in one branch will _not_ be observed by another branch.
  • The test succeeds IFF all branches succeed.
  • If any branch fails, the test ends immediately and the remaining branches won't be executed.

The following property holds:

pre >> branchout [a, b, c] = branchout [pre >> a, pre >> b, pre >> c]

The list of branches must be non-empty.

offshoot :: forall caps m. MonadEmulated caps m => Text -> m () -> m () Source #

Execute one or more actions and roll them back afterwards. Actions performed in offshoot will _not_ be observed by any actions performed after offshoot.

Similar to branchout, but accepts one single branch.

getDelegate :: (HasCallStack, MonadCleveland caps m, ToAddress addr) => addr -> m (Maybe KeyHash) Source #

Get the delegate for the given contract. Fails on implicit contracts.

registerDelegate :: (HasCallStack, MonadCleveland caps m, ToAddress addr) => addr -> m () Source #

Register the given address as a valid delegate.

setVotingPowers :: MonadEmulated caps m => VotingPowers -> m () Source #

Updates voting power accessible via VOTING_POWER and similar instructions.

whenEmulation :: MonadCleveland caps m => (forall caps1 m1. (EqBaseMonad caps caps1, MonadEmulated caps1 m1) => m1 ()) -> m () Source #

Perform an action if we are currently in emulation mode. See also ifEmulation note on constraints.

whenNetwork :: MonadCleveland caps m => (forall caps1 m1. (EqBaseMonad caps caps1, MonadCleveland caps1 m1) => m1 ()) -> m () Source #

Perform an action if we are currently in network mode. See also ifEmulation note on constraints.

ifEmulation :: forall a caps m. MonadCleveland caps m => (forall caps1 m1. (EqBaseMonad caps caps1, MonadEmulated caps1 m1) => m1 a) -> (forall caps1 m1. (EqBaseMonad caps caps1, MonadCleveland caps1 m1) => m1 a) -> m a Source #

Perform one action if we are currently in emulation mode, another otherwise

Functions passed as the first two arguments are universally quantified over the outer monad, so if additional constraints are required beyond MonadEmulated or MonadCleveland, those constraints have to go on the base monad, e.g.

someFunction :: (MonadCleveland caps m, MonadFail (ClevelandBaseMonad caps)) => m ()
someFunction = whenEmulation do
  Just x <- pure (Just 1 :: Maybe Int) -- this would error without MonadFail
  runIO $ print x

Assertions

failure :: forall a caps m. (HasCallStack, MonadCleveland caps m) => Builder -> m a Source #

Fails the test with the given error message.

assert :: (HasCallStack, MonadCleveland caps m) => Bool -> Builder -> m () Source #

Fails the test with the given error message if the given condition is false.

(@==) infix 1 Source #

Arguments

:: (HasCallStack, MonadCleveland caps m, Eq a, Buildable a) 
=> a

The actual value.

-> a

The expected value.

-> m () 

x @== expected fails the test if x is not equal to expected.

(@/=) :: (HasCallStack, MonadCleveland caps m, Eq a, Buildable a) => a -> a -> m () infix 1 Source #

Fails the test if the two given values are equal.

(@@==) infix 1 Source #

Arguments

:: (HasCallStack, MonadCleveland caps m, Eq a, Buildable a) 
=> m a

The actual value.

-> a

The expected value.

-> m () 

Monadic version of @==.

getBalance addr @@== 10

(@@/=) :: (HasCallStack, MonadCleveland caps m, Eq a, Buildable a) => m a -> a -> m () infix 1 Source #

Monadic version of @/=.

getBalance addr @@/= 10

checkCompares :: forall a b caps m. (HasCallStack, MonadCleveland caps m, Buildable a, Buildable b) => a -> (a -> b -> Bool) -> b -> m () Source #

Fails the test if the comparison operator fails when applied to the given arguments. Prints an error message with both arguments.

Example:

checkCompares 2 (>) 1

checkComparesWith :: forall a b caps m. (HasCallStack, MonadCleveland caps m) => (a -> Text) -> a -> (a -> b -> Bool) -> (b -> Text) -> b -> m () Source #

Like checkCompares, but with an explicit show function. This function does not have any constraint on the type parameters a and b.

For example, to print with pretty:

checkComparesWith pretty a (<) pretty b

evalJust :: (HasCallStack, MonadCleveland caps m) => Builder -> Maybe a -> m a Source #

Fails the test if the Maybe is Nothing, otherwise returns the value in the Just.

evalRight :: (HasCallStack, MonadCleveland caps m) => (a -> Builder) -> Either a b -> m b Source #

Fails the test if the Either is Left, otherwise returns the value in the Right.

Exception handling

attempt :: forall e caps m a. (HasCallStack, MonadCleveland caps m, Exception e) => m a -> m (Either e a) Source #

Attempt to run an action and return its result or, if interpretation fails, an error.

catchTransferFailure :: (HasCallStack, MonadCleveland caps m) => m a -> m TransferFailure Source #

Asserts that a transfer should fail, and returns the exception.

checkTransferFailure :: (HasCallStack, MonadCleveland caps m) => TransferFailure -> TransferFailurePredicate -> m () Source #

Check whether a given predicate holds for a given TransferFailure.

expectTransferFailure :: (HasCallStack, MonadCleveland caps m) => TransferFailurePredicate -> m a -> m () Source #

Asserts that a transfer should fail, and runs some TransferFailurePredicates over the exception.

expectTransferFailure (failedWith (constant @MText "NOT_ADMIN")) $
  call contractAddr (Call @"Ep") arg
call contractAddr (Call @"Ep") arg & expectTransferFailure
  ( failedWith (customError #tag 3) &&
    addressIs contractAddr
  )

expectFailedWith :: forall err a caps m. (HasCallStack, MonadCleveland caps m, NiceConstant err) => err -> m a -> m () Source #

Asserts that interpretation of a contract ended with FAILWITH, returning the given constant value.

expectError :: forall err a caps m. (HasCallStack, MonadCleveland caps m, IsError err) => err -> m a -> m () Source #

Asserts that interpretation of a contract ended with FAILWITH, returning the given lorentz error.

expectCustomError :: forall arg a tag caps m. (HasCallStack, MonadCleveland caps m, IsError (CustomError tag), MustHaveErrorArg tag (MText, arg)) => Label tag -> arg -> m a -> m () Source #

Asserts that interpretation of a contract ended with FAILWITH, returning the given custom lorentz error.

expectCustomError_ :: (HasCallStack, MonadCleveland caps m, IsError (CustomError tag), MustHaveErrorArg tag (MText, ())) => Label tag -> m a -> m () Source #

Version of expectCustomError for error with unit argument.

expectCustomErrorNoArg :: (HasCallStack, MonadCleveland caps m, IsError (CustomError tag), MustHaveErrorArg tag MText) => Label tag -> m a -> m () Source #

Version of expectCustomError specialized for expecting NoErrorArgs.

expectNumericError :: forall err a caps m. (HasCallStack, MonadCleveland caps m, IsError err) => ErrorTagMap -> err -> m a -> m () Source #

Asserts that interpretation of a contract ended with FAILWITH, returning the given lorentz numeric error.

clarifyErrors :: forall caps m a. MonadCleveland caps m => Builder -> m a -> m a Source #

Prefix scenario-custom error messages (i.e. CustomTestError either from pure or non-pure implementation), potentially thrown from the given code block.

The prefix will be put at a separate line before the main text, if text is multiline, otherwise it will be separated from the main text with : .

This affects errors produced by functions like failure, assert, @==, etc. Errors related to events in the chain will not be touched.

Example:

for [1..10] \i -> clarifyErrors ("For i=" +| i |+ "") $
  askContract i @@== i * 2

TransferFailure predicates

data TransferFailurePredicate Source #

A predicate that checks whether a transfer operation failed for the expected reason.

Predicates can be combined using the && and || operators.

Constructors

TransferFailurePredicate (TransferFailure -> Validation Builder ())

A predicate that either returns () or, if it fails, a message explaining what the expected outcome was.

AndPredicate (NonEmpty TransferFailurePredicate) 
OrPredicate (NonEmpty TransferFailurePredicate) 

shiftOverflow :: TransferFailurePredicate Source #

Asserts that interpretation of a contract failed due to an overflow error.

emptyTransaction :: TransferFailurePredicate Source #

Asserts that an action failed due to an attempt to transfer 0tz towards a simple address.

badParameter :: TransferFailurePredicate Source #

Asserts that an action failed due to an attempt to call a contract with an invalid parameter.

gasExhaustion :: TransferFailurePredicate Source #

Asserts that interpretation of a contract failed due to gas exhaustion.

failedWith :: SomeConstant -> TransferFailurePredicate Source #

Asserts that interpretation of a contract ended with FAILWITH, throwing the given error.

This function should be used together with one of the "FAILWITH constructors" (e.g. constant, customError).

addressIs Source #

Arguments

:: ToAddress addr 
=> addr

The expected address.

-> TransferFailurePredicate 

Asserts that the error occurred while interpreting the contract with the given address.

FAILWITH errors

constant :: forall err. NiceConstant err => err -> SomeConstant Source #

A constant michelson value that a contract threw with FAILWITH.

lerror :: forall err. IsError err => err -> SomeConstant Source #

A lorentz error.

customError :: forall arg tag. (IsError (CustomError tag), MustHaveErrorArg tag (MText, arg)) => Label tag -> arg -> SomeConstant Source #

A custom lorentz error.

customError_ :: (IsError (CustomError tag), MustHaveErrorArg tag (MText, ())) => Label tag -> SomeConstant Source #

A custom lorentz error with a unit argument.

customErrorNoArg :: (IsError (CustomError tag), MustHaveErrorArg tag MText) => Label tag -> SomeConstant Source #

A custom lorentz error with no argument.

numericError :: forall err. IsError err => ErrorTagMap -> err -> SomeConstant Source #

A lorentz numeric error.

Helpers

withCap :: Monad m => (caps -> cap) -> (cap -> m a) -> ReaderT caps m a Source #