| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell98 |
Numeric.COINOR.CLP
Synopsis
- simplex :: (Coefficient a, Indexed sh, Index sh ~ ix) => Method -> Bounds ix -> Constraints a ix -> (Direction, Objective sh) -> Result sh
- data Direction
- data PlusMinusOne
- data Term a ix = Term a ix
- (.*) :: a -> ix -> Term a ix
- type Constraints a ix = [Inequality [Term a ix]]
- free :: x -> Inequality x
- (<=.) :: x -> Double -> Inequality x
- (>=.) :: x -> Double -> Inequality x
- (==.) :: x -> Double -> Inequality x
- (>=<.) :: x -> (Double, Double) -> Inequality x
- data Method
- dual :: Method
- primal :: Method
- initialSolve :: Method
- initialDualSolve :: Method
- initialPrimalSolve :: Method
- initialBarrierSolve :: Method
- initialBarrierNoCrossSolve :: Method
- data FailureType
- type Result sh = Either FailureType (Double, Array sh Double)
Documentation
simplex :: (Coefficient a, Indexed sh, Index sh ~ ix) => Method -> Bounds ix -> Constraints a ix -> (Direction, Objective sh) -> Result sh Source #
>>>case Shape.indexTupleFromShape tripletShape of (x,y,z) -> mapSnd Array.toTuple <$> LP.simplex LP.dual [] [[2.*x, 1.*y] <=. 10, [1.*y, (5::Double).*z] <=. 20] (LP.Maximize, Array.fromTuple (4,-3,2) :: Array.Array TripletShape Double)Right (28.0,(5.0,0.0,4.0))
>>>case Shape.indexTupleFromShape tripletShape of (x,y,z) -> mapSnd Array.toTuple <$> LP.simplex LP.primal [y >=<. (-12,12)] [[1.*x, (-1).*y] <=. 10, [(-1).*y, (1::Double).*z] <=. 20] (LP.Maximize, Array.fromTuple (4,-3,2) :: Array.Array TripletShape Double)Right (116.0,(22.0,12.0,32.0))
>>>case Shape.indexTupleFromShape tripletShape of (x,y,z) -> mapSnd Array.toTuple <$> LP.simplex LP.primal [y >=<. (-12,12)] [[PlusOne .* x, MinusOne .* y] <=. 10, [MinusOne .* y, PlusOne .* z] <=. 20] (LP.Maximize, Array.fromTuple (4,-3,2) :: Array.Array TripletShape Double)Right (116.0,(22.0,12.0,32.0))
>>>case Shape.indexTupleFromShape tripletShape of (x,y,z) -> mapSnd Array.toTuple <$> LP.simplex LP.primal [y >=<. (-12,12)] [[1.*x, 1.*y] <=. 10, [1.*y, (-1::Double).*z] >=. 20] (LP.Maximize, Array.fromTuple (4,3,2) :: Array.Array TripletShape Double)Left PrimalInfeasible
>>>case Shape.indexTupleFromShape tripletShape of (x,y,z) -> mapSnd Array.toTuple <$> LP.simplex LP.primal [y >=<. (-12,12)] [[1.*x, 1.*y] <=. 10, [1.*y, (1::Double).*z] >=. 20] (LP.Maximize, Array.fromTuple (4,3,2) :: Array.Array TripletShape Double)Left DualInfeasible
forAllMethod $ \method (QC.Positive posWeight) (QC.Positive negWeight) target ->
case Shape.indexTupleFromShape pairShape of
(pos,neg) ->
case mapSnd Array.toTuple <$>
LP.simplex method []
[[1.*pos, (-1::Double).*neg] ==. target]
(LP.Minimize, Array.fromTuple (posWeight,negWeight)
:: Array.Array PairShape Double) of
Left _ -> QC.property False
Right (absol,(posResult,negResult)) ->
QC.property (absol>=0)
.&&.
(posResult === 0 .||. negResult === 0)forAllMethod $ \method target ->
case Shape.indexTupleFromShape pairShape of
(pos,neg) ->
case mapSnd Array.toTuple <$>
LP.simplex method []
[[1.*pos, (-1::Double).*neg] ==. target]
(LP.Minimize, Array.fromTuple (1,1)
:: Array.Array PairShape Double) of
Left _ -> QC.property False
Right (absol,(posResult,negResult)) ->
QC.counterexample (show(absol,(posResult,negResult))) $
QC.property (approxReal 0.001 absol (abs target))
.&&.
(posResult === 0 .||. negResult === 0)forAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \(dir,obj) ->
case LP.simplex method bounds constrs (dir,obj) of
Left _ -> False
Right _ -> TrueforAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \(dir,obj) ->
case LP.simplex method bounds constrs (dir,obj) of
Left _ -> QC.property False
Right (_,sol) -> TestLP.checkFeasibility 0.1 bounds constrs solforAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \(dir,obj) ->
case LP.simplex method bounds constrs (dir,obj) of
Left _ -> QC.property False
Right (_,sol) ->
QC.forAll (QC.choose (0,1)) $ \lambda ->
TestLP.checkFeasibility 0.1 bounds constrs $
TestLP.affineCombination lambda sol (Array.map fromIntegral origin)forAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \(dir,obj) ->
case LP.simplex method bounds constrs (dir,obj) of
Left _ -> QC.property False
Right (opt,sol) ->
QC.forAll (QC.choose (0,1)) $ \lambda ->
let val = TestLP.scalarProduct obj $
TestLP.affineCombination lambda sol (Array.map fromIntegral origin)
in case dir of
LP.Minimize -> opt-0.01 <= val
LP.Maximize -> opt+0.01 >= valforAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllBoundedProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \dirObjA ->
QC.forAll (TestLP.genObjective origin) $ \dirObjB ->
let solA = LP.simplex method bounds constrs dirObjA in
let solB = LP.simplex method bounds constrs dirObjB in
QC.counterexample (show (mapRight fst solA, mapRight fst solB)) $
case (solA, solB) of
(Right _, Right _) -> True
(Left _, Left _) -> True
_ -> FalseforAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \(_dir,obj) ->
case (LP.simplex method bounds constrs (LP.Minimize,obj),
LP.simplex method bounds constrs (LP.Maximize,obj)) of
(Right (optMin,_), Right (optMax,_)) ->
QC.counterexample (show (optMin, optMax)) $ optMin <= optMax + 0.01
_ -> QC.property FalseforAllMethod $ \method ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds allConstrs ->
QC.forAll (QC.sublistOf allConstrs) $ \someConstrs ->
QC.forAll (TestLP.genObjective origin) $ \(dir,obj) ->
case (LP.simplex method bounds allConstrs (dir,obj),
LP.simplex method bounds someConstrs (dir,obj)) of
(Right (optAll,_), Right (optSome,_)) ->
QC.counterexample (show (optAll, optSome)) $
case dir of
LP.Minimize -> optAll >= optSome-0.01
LP.Maximize -> optAll <= optSome+0.01
_ -> QC.property FalseforAllMethod $ \methodA ->
forAllMethod $ \methodB ->
TestLP.forAllOrigin $ \origin ->
TestLP.forAllProblem origin $ \bounds constrs ->
QC.forAll (TestLP.genObjective origin) $ \dirObj ->
case (LP.simplex methodA bounds constrs dirObj,
LP.simplex methodB bounds constrs dirObj) of
(Right (optA,_), Right (optB,_)) ->
QC.counterexample (show (optA, optB)) $
approxReal 0.01 optA optB
_ -> QC.property FalseInstances
| Bounded Direction | |
| Enum Direction | |
Defined in Numeric.LinearProgramming.Common Methods succ :: Direction -> Direction # pred :: Direction -> Direction # fromEnum :: Direction -> Int # enumFrom :: Direction -> [Direction] # enumFromThen :: Direction -> Direction -> [Direction] # enumFromTo :: Direction -> Direction -> [Direction] # enumFromThenTo :: Direction -> Direction -> Direction -> [Direction] # | |
| Show Direction | |
| Eq Direction | |
data PlusMinusOne Source #
Instances
| Show PlusMinusOne Source # | |
Defined in Numeric.COINOR.CLP Methods showsPrec :: Int -> PlusMinusOne -> ShowS # show :: PlusMinusOne -> String # showList :: [PlusMinusOne] -> ShowS # | |
| Eq PlusMinusOne Source # | |
Defined in Numeric.COINOR.CLP | |
Constructors
| Term a ix |
type Constraints a ix = [Inequality [Term a ix]] #
free :: x -> Inequality x #
(<=.) :: x -> Double -> Inequality x infix 4 #
(>=.) :: x -> Double -> Inequality x infix 4 #
(==.) :: x -> Double -> Inequality x infix 4 #
(>=<.) :: x -> (Double, Double) -> Inequality x infix 4 #
data FailureType Source #
Instances
| Show FailureType Source # | |
Defined in Numeric.COINOR.CLP.Private Methods showsPrec :: Int -> FailureType -> ShowS # show :: FailureType -> String # showList :: [FailureType] -> ShowS # | |
| Eq FailureType Source # | |
Defined in Numeric.COINOR.CLP.Private | |