{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UnicodeSyntax #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE Rank2Types #-}
module Data.Colour.Manifold (
Colour, QuantisedColour(..)
, ColourMap, planarColourMap, colourCurve, colourMapPlane, spectralSwing
, ColourPlane, cpCold, cpNeutral, cpHot, spanColourPlane
, ColourMappable(..)
, SimpleColourMap, blackBlueYellowRed, brightVsRed, redVsBlue
) where
import Data.Functor (($>))
import Control.Applicative (empty)
import Control.Applicative.Constrained
import Control.Arrow.Constrained
import Data.Semigroup
import Data.Manifold.PseudoAffine
import Data.Manifold.Types
import Data.Manifold.Atlas
import Data.Manifold.Riemannian
import Data.VectorSpace
import Data.AffineSpace
import Data.AdditiveGroup
import Data.Manifold.Shade (Shade(..), Shade'(..), rangeWithinVertices)
import Data.Colour.SRGB (toSRGB, toSRGB24)
import Data.Colour.SRGB.Linear
import Data.Colour hiding (AffineSpace)
import Data.Colour.Names
import Math.LinearMap.Category
import Linear.V2
import Linear.V3
import qualified Prelude as Hask
import Control.Category.Constrained.Prelude
import Codec.Picture.Types
import Data.Coerce
import Data.Type.Coercion
import Data.CallStack
import Control.Lens
newtype ColourNeedle = ColourNeedle { getRGBNeedle :: RGB ℝ } deriving (Eq, Show)
asV3Needle :: ColourNeedle -+> V3 ℝ
asV3Needle = LinearFunction $ \(ColourNeedle (RGB r g b)) -> V3 r g b
fromV3Needle :: V3 ℝ -+> ColourNeedle
fromV3Needle = LinearFunction $ \(V3 r g b) -> ColourNeedle $ RGB r g b
asV3Tensor :: (ColourNeedle⊗w) -+> (V3 ℝ⊗w)
asV3Tensor = LinearFunction $ \(Tensor (RGB r g b)) -> Tensor $ V3 r g b
fromV3Tensor :: (V3 ℝ⊗w) -+> (ColourNeedle⊗w)
fromV3Tensor = LinearFunction $ \(Tensor (V3 r g b)) -> Tensor $ RGB r g b
fromV3LinMap :: (V3 ℝ+>w) -+> (ColourNeedle+>w)
fromV3LinMap = LinearFunction $ \(LinearMap (V3 r g b)) -> LinearMap $ RGB r g b
withRGBNeedle :: (RGB Double -> RGB Double) -> ColourNeedle -> ColourNeedle
withRGBNeedle f (ColourNeedle q) = ColourNeedle $ f q
instance AdditiveGroup ColourNeedle where
zeroV = ColourNeedle $ RGB 0 0 0
negateV = withRGBNeedle $ fmap negate
ColourNeedle q ^+^ ColourNeedle s = ColourNeedle $ liftA2 (+) q s
instance VectorSpace ColourNeedle where
type Scalar ColourNeedle = ℝ
(*^)μ = withRGBNeedle $ fmap (μ*)
instance TensorSpace ColourNeedle where
type TensorProduct ColourNeedle w = RGB w
scalarSpaceWitness = ScalarSpaceWitness
linearManifoldWitness = LinearManifoldWitness BoundarylessWitness
zeroTensor = Tensor (RGB zeroV zeroV zeroV)
toFlatTensor = LinearFunction $ \(ColourNeedle (RGB r g b)) -> Tensor (RGB r g b)
fromFlatTensor = LinearFunction $ \(Tensor (RGB r g b)) -> ColourNeedle (RGB r g b)
addTensors (Tensor (RGB r g b)) (Tensor (RGB r' g' b'))
= Tensor $ RGB (r^+^r') (g^+^g') (b^+^b')
subtractTensors (Tensor (RGB r g b)) (Tensor (RGB r' g' b'))
= Tensor $ RGB (r^-^r') (g^-^g') (b^-^b')
negateTensor = LinearFunction $ \(Tensor (RGB r g b))
-> Tensor (RGB (negateV r) (negateV g) (negateV b))
scaleTensor = bilinearFunction $ \μ (Tensor (RGB r g b))
-> Tensor (RGB (μ*^r) (μ*^g) (μ*^b))
tensorProduct = bilinearFunction $ \(ColourNeedle (RGB r g b)) w
-> Tensor (RGB (r*^w) (g*^w) (b*^w))
transposeTensor = (getLinearFunction fmapTensor fromV3Needle)
. transposeTensor . asV3Tensor
fmapTensor = bilinearFunction $ \f (Tensor (RGB r g b))
-> Tensor $ RGB (f $ r) (f $ g) (f $ b)
fzipTensorWith = bilinearFunction $ \f (Tensor (RGB r g b), Tensor (RGB r' g' b'))
-> Tensor $ RGB (f $ (r,r')) (f $ (g,g')) (f $ (b,b'))
coerceFmapTensorProduct _ Coercion = Coercion
wellDefinedTensor t@(Tensor (RGB r g b))
= wellDefinedVector r >> wellDefinedVector g >> wellDefinedVector b $> t
instance LinearSpace ColourNeedle where
type DualVector ColourNeedle = ColourNeedle
linearId = LinearMap $ RGB (ColourNeedle $ RGB 1 0 0)
(ColourNeedle $ RGB 0 1 0)
(ColourNeedle $ RGB 0 0 1)
tensorId = ti dualSpaceWitness (asTensor $ id)
where ti :: ∀ w . (TensorSpace w, Scalar w ~ ℝ)
=> DualSpaceWitness w -> Tensor ℝ (DualVector w) w
-> Tensor ℝ ColourNeedle w+>Tensor ℝ ColourNeedle w
ti DualSpaceWitness wid = LinearMap $ RGB
(fmap (LinearFunction $ \w -> Tensor $ RGB w zeroV zeroV) $ wid)
(fmap (LinearFunction $ \w -> Tensor $ RGB zeroV w zeroV) $ wid)
(fmap (LinearFunction $ \w -> Tensor $ RGB zeroV zeroV w) $ wid)
coerceDoubleDual = Coercion
dualSpaceWitness = DualSpaceWitness
contractTensorMap = LinearFunction $ \(LinearMap (RGB (Tensor (RGB r _ _))
(Tensor (RGB _ g _))
(Tensor (RGB _ _ b))))
-> r ^+^ g ^+^ b
contractMapTensor = LinearFunction $ \(Tensor (RGB (LinearMap (RGB r _ _))
(LinearMap (RGB _ g _))
(LinearMap (RGB _ _ b))))
-> r ^+^ g ^+^ b
contractLinearMapAgainst = bilinearFunction $ \(LinearMap (RGB r g b)) f
-> channelRed (getRGBNeedle $ f $ r)
+ channelGreen (getRGBNeedle $ f $ g)
+ channelBlue (getRGBNeedle $ f $ b)
applyDualVector = bilinearFunction $
\(ColourNeedle (RGB r' g' b')) (ColourNeedle (RGB r g b))
-> r'*r + g'*g + b'*b
applyLinear = bilinearFunction $ \(LinearMap (RGB r' g' b')) (ColourNeedle (RGB r g b))
-> r'^*r ^+^ g'^*g ^+^ b'^*b
applyTensorFunctional = bilinearFunction
$ \(LinearMap (RGB r' g' b')) (Tensor (RGB r g b))
-> r'<.>^r + g'<.>^g + b'<.>^b
applyTensorLinMap = bilinearFunction
$ \(LinearMap (RGB r' g' b')) (Tensor (RGB r g b))
-> (r'+$r) ^+^ (g'+$g) ^+^ (b'+$b)
where f+$x = getLinearFunction (getLinearFunction applyLinear $ fromTensor $ f) x
composeLinear = bilinearFunction $ \f (LinearMap (RGB r' g' b'))
-> LinearMap $ RGB (f +$ r') (f +$ g') (f +$ b')
where f+$x = getLinearFunction (getLinearFunction applyLinear f) x
instance SemiInner ColourNeedle where
dualBasisCandidates = cartesianDualBasisCandidates
[ColourNeedle (RGB 1 0 0), ColourNeedle (RGB 0 1 0), ColourNeedle (RGB 0 0 1)]
(\(ColourNeedle (RGB r g b)) -> abs <$> [r,g,b])
tensorDualBasisCandidates = map (second $ getLinearFunction asV3Tensor)
>>> tensorDualBasisCandidates
>>> map (fmap $ second $ getLinearFunction fromV3LinMap)
instance FiniteDimensional ColourNeedle where
data SubBasis ColourNeedle = ColourNeedleBasis
entireBasis = ColourNeedleBasis
enumerateSubBasis ColourNeedleBasis
= ColourNeedle <$> [RGB 1 0 0, RGB 0 1 0, RGB 0 0 1]
decomposeLinMap (LinearMap (RGB r g b)) = (ColourNeedleBasis, ([r,g,b]++))
decomposeLinMapWithin ColourNeedleBasis (LinearMap (RGB r g b)) = pure ([r,g,b]++)
recomposeSB ColourNeedleBasis [] = (ColourNeedle $ RGB 0 0 0, [])
recomposeSB ColourNeedleBasis [r] = (ColourNeedle $ RGB r 0 0, [])
recomposeSB ColourNeedleBasis [r,g] = (ColourNeedle $ RGB r g 0, [])
recomposeSB ColourNeedleBasis (r:g:b:l) = (ColourNeedle $ RGB r g b, l)
recomposeSBTensor ColourNeedleBasis sbw l
= let (r,l') = recomposeSB sbw l
(g,l'') = recomposeSB sbw l'
(b,l''') = recomposeSB sbw l''
in (Tensor $ RGB r g b, l''')
recomposeLinMap ColourNeedleBasis [] = (LinearMap $ RGB zeroV zeroV zeroV, [])
recomposeLinMap ColourNeedleBasis [r] = (LinearMap $ RGB r zeroV zeroV, [])
recomposeLinMap ColourNeedleBasis [r,g] = (LinearMap $ RGB r g zeroV, [])
recomposeLinMap ColourNeedleBasis (r:g:b:l) = (LinearMap $ RGB r g b, l)
recomposeContraLinMap f l = LinearMap $ RGB (f $ fmap (channelRed . getRGBNeedle) l)
(f $ fmap (channelGreen . getRGBNeedle) l)
(f $ fmap (channelBlue . getRGBNeedle) l)
recomposeContraLinMapTensor = rclmt dualSpaceWitness
where rclmt :: ∀ u w f . ( Hask.Functor f
, FiniteDimensional u, LinearSpace w
, Scalar u ~ ℝ, Scalar w ~ ℝ )
=> DualSpaceWitness u
-> (f ℝ -> w) -> f (ColourNeedle+>DualVector u)
-> (ColourNeedle⊗u)+>w
rclmt DualSpaceWitness fw mv = LinearMap $
(\c -> fromLinearMap $ recomposeContraLinMap fw
$ fmap (\(LinearMap q) -> c q) mv)
<$> RGB channelRed channelGreen channelBlue
uncanonicallyFromDual = id
uncanonicallyToDual = id
fromLinearMap :: ∀ s u v w . (LinearSpace u, Scalar u ~ s)
=> LinearMap s (DualVector u) w -> Tensor s u w
fromLinearMap = case dualSpaceWitness :: DualSpaceWitness u of
DualSpaceWitness -> coerce
asTensor :: ∀ s u v w . (LinearSpace u, Scalar u ~ s)
=> LinearMap s u w -> Tensor s (DualVector u) w
asTensor = coerce
fromTensor :: ∀ s u v w . (LinearSpace u, Scalar u ~ s)
=> Tensor s (DualVector u) w -> LinearMap s u w
fromTensor = coerce
instance Semimanifold ColourNeedle where
type Needle ColourNeedle = ColourNeedle
fromInterior = id; toInterior = pure
translateP = pure (^+^)
instance PseudoAffine ColourNeedle where
ColourNeedle q .-~. ColourNeedle s = pure . ColourNeedle $ liftA2 (-) q s
instance Atlas ColourNeedle where
type ChartIndex ColourNeedle = ()
interiorChartReferencePoint _ () = zeroV
lookupAtlas _ = ()
instance AffineSpace ColourNeedle where
type Diff ColourNeedle = ColourNeedle
(.-.) = (.-~!)
(.+^) = (.+~^)
fromLtdRGB :: LtdCol -> Colour ℝ
fromLtdRGB = fmap (\(CD¹ h Origin) -> h) >>> \(RGB r g b) -> rgb r g b
toLtdRGB :: Colour ℝ -> LtdCol
toLtdRGB = toRGB >>> fmap ((`CD¹`Origin) . min 1 . max 0)
type LtdCol = RGB (CD¹ ℝ⁰)
bijectToLtd :: ℝ -> CD¹ ℝ⁰
bijectToLtd 0 = CD¹ 0.5 Origin
bijectToLtd y
| ψ > 0.5 = CD¹ 1 Origin
| ψ > -0.5 = CD¹ ( 0.5 - ψ ) Origin
| otherwise = CD¹ 0 Origin
where ψ = (1 - sqrt(1+y^2)) / (2*y)
bijectFromLtd :: CD¹ ℝ⁰ -> Maybe ℝ
bijectFromLtd (CD¹ x Origin)
| x>0 && x<1 = return $ (x - 0.5) / (x*(1 - x))
| otherwise = empty
instance Semimanifold (Colour ℝ) where
type Interior (Colour ℝ) = ColourNeedle
type Needle (Colour ℝ) = ColourNeedle
fromInterior (ColourNeedle q) = fromLtdRGB $ fmap bijectToLtd q
toInterior = fmap ColourNeedle . toin . toLtdRGB
where toin (RGB r g b) = liftA3 RGB (bijectFromLtd r) (bijectFromLtd g) (bijectFromLtd b)
translateP = pure (^+^)
instance PseudoAffine (Colour ℝ) where
c .-~. ζ = liftA2 (^-^) (toInterior c) (toInterior ζ)
instance Geodesic (Colour ℝ) where
geodesicBetween a b = return $ \(D¹ q) -> blend ((q+1)/2) b a
instance Geodesic ColourNeedle where
geodesicBetween (ColourNeedle (RGB r g b)) (ColourNeedle (RGB r' g' b'))
= return $ \(D¹ q) -> let η' = (q+1)/2 in ColourNeedle
$ RGB (lerp r r' η')
(lerp g g' η')
(lerp b b' η')
instance Atlas (Colour ℝ) where
type ChartIndex (Colour ℝ) = ()
chartReferencePoint () = grey
interiorChartReferencePoint = \_ () -> intGrey
where Just intGrey = toInterior (grey :: Colour ℝ)
lookupAtlas _ = ()
class QuantisedColour c where
quantiseColour :: Colour ℝ -> c
instance QuantisedColour PixelRGBF where
quantiseColour c = PixelRGBF r g b
where RGB r g b = fmap realToFrac $ toSRGB c
instance QuantisedColour PixelRGB8 where
quantiseColour c = PixelRGB8 r g b
where RGB r g b = toSRGB24 c
data ColourMap x = ColourMap {
_cmPlane :: ColourPlane
, _cmSpectSwing :: ℝ
}
planarColourMap :: ColourPlane -> ColourMap x
planarColourMap = (`ColourMap`0)
colourCurve :: ColourPlane -> ℝ -> ColourMap ℝ
colourCurve = ColourMap
spectralSwing :: (Needle x ~ ℝ) => Traversal' (ColourMap x) ℝ
spectralSwing = lens _cmSpectSwing (\cm sw' -> cm{_cmSpectSwing = sw'})
colourMapPlane :: Traversal' (ColourMap x) ColourPlane
colourMapPlane = lens _cmPlane (\cm pl' -> cm{_cmPlane = pl'})
data ColourPlane = ColourPlane {
_cpCold :: Colour ℝ
, _cpNeutral :: Interior (Colour ℝ)
, _cpHot :: Colour ℝ
}
makeLenses ''ColourPlane
spanColourPlane :: Interior (Colour ℝ)
-> (Colour ℝ, Colour ℝ)
-> ColourPlane
spanColourPlane neutral (cold,hot) = ColourPlane cold neutral hot
class Geodesic x => ColourMappable x where
type ColourMapped x :: *
type MappingVertex x :: *
mapToColourWith :: HasCallStack
=> ColourMap (MappingVertex x)
-> Interior (MappingVertex x)
-> (MappingVertex x, MappingVertex x)
-> x
-> ColourMapped x
instance ColourMappable ℝ where
type ColourMapped ℝ = Colour ℝ
type MappingVertex ℝ = ℝ
mapToColourWith (ColourMap (ColourPlane coldC neutralC hotC) swing)
neutralP (coldP, hotP)
= (\(Shade c _) -> fromInterior c)
. shFn
. \x -> let φ = 2*(x-neutralP)/(hotP-coldP)
in Shade ( (1 - φ)/2 + (φ^2 - 1)*exp swing/2
, (φ + 1)/2 + (φ^2 - 1)*exp swing/2 )
(spanNorm [(256,0), (0,256)])
:: Shade (ℝ,ℝ)
where Just shFn = rangeWithinVertices ((0,0), neutralC)
[((1,0), coldC), ((0,1), hotC)]
instance ColourMappable (ℝ,ℝ) where
type ColourMapped (ℝ,ℝ) = Colour ℝ
type MappingVertex (ℝ,ℝ) = (ℝ,ℝ)
mapToColourWith (ColourMap cp swing)
(xN,yN) ((xCold,yCold), (xHot,yHot))
= mapToColourWith (ColourMap cp swing) (V2 xN yN) (V2 xCold yCold, V2 xHot yHot)
. \(x,y) -> (V2 x y)
instance ColourMappable ℝ² where
type ColourMapped ℝ² = Colour ℝ
type MappingVertex ℝ² = ℝ²
mapToColourWith (ColourMap (ColourPlane coldC neutralC hotC) swing)
neutralP (coldP, hotP)
= (\(Shade c _) -> fromInterior c)
. shFn
. \xy -> Shade xy quantisationNorm
where Just shFn = rangeWithinVertices (neutralP, neutralC)
[(coldP, coldC), (hotP, hotC)]
quantisationNorm = scaleNorm 256 . dualNorm
$ spanVariance [coldP^-^neutralP, hotP^-^neutralP]
class ColourMappable x => HasSimpleColourMaps x where
simpleColourMap :: ColourPlane -> ℝ -> ColourMap x
simpleColourMap = const . planarColourMap
instance HasSimpleColourMaps ℝ where
simpleColourMap = colourCurve
instance HasSimpleColourMaps (ℝ,ℝ)
instance HasSimpleColourMaps ℝ²
type SimpleColourMap = ∀ x . HasSimpleColourMaps x => ColourMap x
blackBlueYellowRed :: SimpleColourMap
blackBlueYellowRed
= simpleColourMap (spanColourPlane neutralc (darkblue,goldenrod)) 1
where Just neutralc = toInterior (dimgrey :: Colour ℝ)
redVsBlue :: SimpleColourMap
redVsBlue
= simpleColourMap (spanColourPlane neutralc (rgb 0.9 0 0.2, rgb 0.1 0.3 1)) (-1/2)
where neutralc = ColourNeedle $ RGB (-1.2) (-0.5) (-1.5)
brightVsRed :: SimpleColourMap
brightVsRed
= simpleColourMap (spanColourPlane neutralc (white, orangered)) 1
where Just neutralc = toInterior (darkgrey :: Colour ℝ)