compdata-0.12: Compositional Data Types

Copyright(c) 2010-2011 Patrick Bahr
LicenseBSD3
MaintainerPatrick Bahr <paba@diku.dk>
Stabilityexperimental
Portabilitynon-portable (GHC Extensions)
Safe HaskellNone
LanguageHaskell98

Data.Comp.Derive

Contents

Description

This module contains functionality for automatically deriving boilerplate code using Template Haskell. Examples include instances of Functor, Foldable, and Traversable.

Synopsis

Documentation

derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] Source #

Helper function for generating a list of instances for a list of named signatures. For example, in order to derive instances Functor and ShowF for a signature Exp, use derive as follows (requires Template Haskell):

$(derive [makeFunctor, makeShowF] [''Exp])

Derive boilerplate instances for compositional data type signatures.

ShowF

class ShowF f where Source #

Signature printing. An instance ShowF f gives rise to an instance Show (Term f).

Minimal complete definition

showF

Methods

showF :: f String -> String Source #

Instances
ShowF [] Source # 
Instance details

Defined in Data.Comp.Show

Methods

showF :: [String] -> String Source #

ShowF Maybe Source # 
Instance details

Defined in Data.Comp.Show

Show a => ShowF ((,) a) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showF :: (a, String) -> String Source #

(Functor f, ShowF f) => ShowF (Cxt h f) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showF :: Cxt h f String -> String Source #

(ShowF f, Show p) => ShowF (f :&: p) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showF :: (f :&: p) String -> String Source #

(ShowF f, ShowF g) => ShowF (f :+: g) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showF :: (f :+: g) String -> String Source #

makeShowF :: Name -> Q [Dec] Source #

Derive an instance of ShowF for a type constructor of any first-order kind taking at least one argument.

class ShowConstr f where Source #

Constructor printing.

Minimal complete definition

showConstr

Methods

showConstr :: f a -> String Source #

Instances
(ShowConstr f, Show p) => ShowConstr (f :&: p) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showConstr :: (f :&: p) a -> String Source #

(ShowConstr f, ShowConstr g) => ShowConstr (f :+: g) Source # 
Instance details

Defined in Data.Comp.Show

Methods

showConstr :: (f :+: g) a -> String Source #

makeShowConstr :: Name -> Q [Dec] Source #

Derive an instance of showConstr for a type constructor of any first-order kind taking at least one argument.

EqF

class EqF f where Source #

Signature equality. An instance EqF f gives rise to an instance Eq (Term f).

Minimal complete definition

eqF

Methods

eqF :: Eq a => f a -> f a -> Bool Source #

Instances
EqF [] Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a => [a] -> [a] -> Bool Source #

EqF Maybe Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a => Maybe a -> Maybe a -> Bool Source #

Eq a => EqF ((,) a) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, a0) -> (a, a0) -> Bool Source #

(Eq a, Eq b) => EqF ((,,) a b) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, a0) -> (a, b, a0) -> Bool Source #

EqF f => EqF (Cxt h f) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a => Cxt h f a -> Cxt h f a -> Bool Source #

(Eq a, Eq b, Eq c) => EqF ((,,,) a b c) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, a0) -> (a, b, c, a0) -> Bool Source #

(EqF f, EqF g) => EqF (f :+: g) Source #

EqF is propagated through sums.

Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a => (f :+: g) a -> (f :+: g) a -> Bool Source #

(Eq a, Eq b, Eq c, Eq d) => EqF ((,,,,) a b c d) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, a0) -> (a, b, c, d, a0) -> Bool Source #

(Eq a, Eq b, Eq c, Eq d, Eq e) => EqF ((,,,,,) a b c d e) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, e, a0) -> (a, b, c, d, e, a0) -> Bool Source #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => EqF ((,,,,,,) a b c d e f) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, e, f, a0) -> (a, b, c, d, e, f, a0) -> Bool Source #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => EqF ((,,,,,,,) a b c d e f g) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, e, f, g, a0) -> (a, b, c, d, e, f, g, a0) -> Bool Source #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => EqF ((,,,,,,,,) a b c d e f g h) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, e, f, g, h, a0) -> (a, b, c, d, e, f, g, h, a0) -> Bool Source #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => EqF ((,,,,,,,,,) a b c d e f g h i) Source # 
Instance details

Defined in Data.Comp.Equality

Methods

eqF :: Eq a0 => (a, b, c, d, e, f, g, h, i, a0) -> (a, b, c, d, e, f, g, h, i, a0) -> Bool Source #

makeEqF :: Name -> Q [Dec] Source #

Derive an instance of EqF for a type constructor of any first-order kind taking at least one argument.

OrdF

class EqF f => OrdF f where Source #

Signature ordering. An instance OrdF f gives rise to an instance Ord (Term f).

Minimal complete definition

compareF

Methods

compareF :: Ord a => f a -> f a -> Ordering Source #

Instances
OrdF [] Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a => [a] -> [a] -> Ordering Source #

OrdF Maybe Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a => Maybe a -> Maybe a -> Ordering Source #

Ord a => OrdF ((,) a) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, a0) -> (a, a0) -> Ordering Source #

(Ord a, Ord b) => OrdF ((,,) a b) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, a0) -> (a, b, a0) -> Ordering Source #

OrdF f => OrdF (Cxt h f) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a => Cxt h f a -> Cxt h f a -> Ordering Source #

(Ord a, Ord b, Ord c) => OrdF ((,,,) a b c) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, a0) -> (a, b, c, a0) -> Ordering Source #

(OrdF f, OrdF g) => OrdF (f :+: g) Source #

OrdF is propagated through sums.

Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a => (f :+: g) a -> (f :+: g) a -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d) => OrdF ((,,,,) a b c d) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, a0) -> (a, b, c, d, a0) -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d, Ord e) => OrdF ((,,,,,) a b c d e) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, e, a0) -> (a, b, c, d, e, a0) -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => OrdF ((,,,,,,) a b c d e f) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, e, f, a0) -> (a, b, c, d, e, f, a0) -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => OrdF ((,,,,,,,) a b c d e f g) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, e, f, g, a0) -> (a, b, c, d, e, f, g, a0) -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => OrdF ((,,,,,,,,) a b c d e f g h) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, e, f, g, h, a0) -> (a, b, c, d, e, f, g, h, a0) -> Ordering Source #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => OrdF ((,,,,,,,,,) a b c d e f g h i) Source # 
Instance details

Defined in Data.Comp.Ordering

Methods

compareF :: Ord a0 => (a, b, c, d, e, f, g, h, i, a0) -> (a, b, c, d, e, f, g, h, i, a0) -> Ordering Source #

makeOrdF :: Name -> Q [Dec] Source #

Derive an instance of OrdF for a type constructor of any first-order kind taking at least one argument.

Foldable

class Foldable (t :: * -> *) #

Data structures that can be folded.

For example, given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Foldable Tree where
   foldMap f Empty = mempty
   foldMap f (Leaf x) = f x
   foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r

This is suitable even for abstract types, as the monoid is assumed to satisfy the monoid laws. Alternatively, one could define foldr:

instance Foldable Tree where
   foldr f z Empty = z
   foldr f z (Leaf x) = f x z
   foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l

Foldable instances are expected to satisfy the following laws:

foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const  1)

sum, product, maximum, and minimum should all be essentially equivalent to foldMap forms, such as

sum = getSum . foldMap Sum

but may be less defined.

If the type is also a Functor instance, it should satisfy

foldMap f = fold . fmap f

which implies that

foldMap f . fmap g = foldMap (f . g)

Minimal complete definition

foldMap | foldr

Instances
Foldable []

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => [m] -> m #

foldMap :: Monoid m => (a -> m) -> [a] -> m #

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr' :: (a -> b -> b) -> b -> [a] -> b #

foldl :: (b -> a -> b) -> b -> [a] -> b #

foldl' :: (b -> a -> b) -> b -> [a] -> b #

foldr1 :: (a -> a -> a) -> [a] -> a #

foldl1 :: (a -> a -> a) -> [a] -> a #

toList :: [a] -> [a] #

null :: [a] -> Bool #

length :: [a] -> Int #

elem :: Eq a => a -> [a] -> Bool #

maximum :: Ord a => [a] -> a #

minimum :: Ord a => [a] -> a #

sum :: Num a => [a] -> a #

product :: Num a => [a] -> a #

Foldable Maybe

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Foldable Par1 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Par1 m -> m #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m #

foldr :: (a -> b -> b) -> b -> Par1 a -> b #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b #

foldl :: (b -> a -> b) -> b -> Par1 a -> b #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b #

foldr1 :: (a -> a -> a) -> Par1 a -> a #

foldl1 :: (a -> a -> a) -> Par1 a -> a #

toList :: Par1 a -> [a] #

null :: Par1 a -> Bool #

length :: Par1 a -> Int #

elem :: Eq a => a -> Par1 a -> Bool #

maximum :: Ord a => Par1 a -> a #

minimum :: Ord a => Par1 a -> a #

sum :: Num a => Par1 a -> a #

product :: Num a => Par1 a -> a #

Foldable Complex 
Instance details

Defined in Data.Complex

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Foldable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Foldable ZipList 
Instance details

Defined in Control.Applicative

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Foldable Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Foldable IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

fold :: Monoid m => IntMap m -> m #

foldMap :: Monoid m => (a -> m) -> IntMap a -> m #

foldr :: (a -> b -> b) -> b -> IntMap a -> b #

foldr' :: (a -> b -> b) -> b -> IntMap a -> b #

foldl :: (b -> a -> b) -> b -> IntMap a -> b #

foldl' :: (b -> a -> b) -> b -> IntMap a -> b #

foldr1 :: (a -> a -> a) -> IntMap a -> a #

foldl1 :: (a -> a -> a) -> IntMap a -> a #

toList :: IntMap a -> [a] #

null :: IntMap a -> Bool #

length :: IntMap a -> Int #

elem :: Eq a => a -> IntMap a -> Bool #

maximum :: Ord a => IntMap a -> a #

minimum :: Ord a => IntMap a -> a #

sum :: Num a => IntMap a -> a #

product :: Num a => IntMap a -> a #

Foldable Tree 
Instance details

Defined in Data.Tree

Methods

fold :: Monoid m => Tree m -> m #

foldMap :: Monoid m => (a -> m) -> Tree a -> m #

foldr :: (a -> b -> b) -> b -> Tree a -> b #

foldr' :: (a -> b -> b) -> b -> Tree a -> b #

foldl :: (b -> a -> b) -> b -> Tree a -> b #

foldl' :: (b -> a -> b) -> b -> Tree a -> b #

foldr1 :: (a -> a -> a) -> Tree a -> a #

foldl1 :: (a -> a -> a) -> Tree a -> a #

toList :: Tree a -> [a] #

null :: Tree a -> Bool #

length :: Tree a -> Int #

elem :: Eq a => a -> Tree a -> Bool #

maximum :: Ord a => Tree a -> a #

minimum :: Ord a => Tree a -> a #

sum :: Num a => Tree a -> a #

product :: Num a => Tree a -> a #

Foldable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Seq m -> m #

foldMap :: Monoid m => (a -> m) -> Seq a -> m #

foldr :: (a -> b -> b) -> b -> Seq a -> b #

foldr' :: (a -> b -> b) -> b -> Seq a -> b #

foldl :: (b -> a -> b) -> b -> Seq a -> b #

foldl' :: (b -> a -> b) -> b -> Seq a -> b #

foldr1 :: (a -> a -> a) -> Seq a -> a #

foldl1 :: (a -> a -> a) -> Seq a -> a #

toList :: Seq a -> [a] #

null :: Seq a -> Bool #

length :: Seq a -> Int #

elem :: Eq a => a -> Seq a -> Bool #

maximum :: Ord a => Seq a -> a #

minimum :: Ord a => Seq a -> a #

sum :: Num a => Seq a -> a #

product :: Num a => Seq a -> a #

Foldable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => FingerTree m -> m #

foldMap :: Monoid m => (a -> m) -> FingerTree a -> m #

foldr :: (a -> b -> b) -> b -> FingerTree a -> b #

foldr' :: (a -> b -> b) -> b -> FingerTree a -> b #

foldl :: (b -> a -> b) -> b -> FingerTree a -> b #

foldl' :: (b -> a -> b) -> b -> FingerTree a -> b #

foldr1 :: (a -> a -> a) -> FingerTree a -> a #

foldl1 :: (a -> a -> a) -> FingerTree a -> a #

toList :: FingerTree a -> [a] #

null :: FingerTree a -> Bool #

length :: FingerTree a -> Int #

elem :: Eq a => a -> FingerTree a -> Bool #

maximum :: Ord a => FingerTree a -> a #

minimum :: Ord a => FingerTree a -> a #

sum :: Num a => FingerTree a -> a #

product :: Num a => FingerTree a -> a #

Foldable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Digit m -> m #

foldMap :: Monoid m => (a -> m) -> Digit a -> m #

foldr :: (a -> b -> b) -> b -> Digit a -> b #

foldr' :: (a -> b -> b) -> b -> Digit a -> b #

foldl :: (b -> a -> b) -> b -> Digit a -> b #

foldl' :: (b -> a -> b) -> b -> Digit a -> b #

foldr1 :: (a -> a -> a) -> Digit a -> a #

foldl1 :: (a -> a -> a) -> Digit a -> a #

toList :: Digit a -> [a] #

null :: Digit a -> Bool #

length :: Digit a -> Int #

elem :: Eq a => a -> Digit a -> Bool #

maximum :: Ord a => Digit a -> a #

minimum :: Ord a => Digit a -> a #

sum :: Num a => Digit a -> a #

product :: Num a => Digit a -> a #

Foldable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Node m -> m #

foldMap :: Monoid m => (a -> m) -> Node a -> m #

foldr :: (a -> b -> b) -> b -> Node a -> b #

foldr' :: (a -> b -> b) -> b -> Node a -> b #

foldl :: (b -> a -> b) -> b -> Node a -> b #

foldl' :: (b -> a -> b) -> b -> Node a -> b #

foldr1 :: (a -> a -> a) -> Node a -> a #

foldl1 :: (a -> a -> a) -> Node a -> a #

toList :: Node a -> [a] #

null :: Node a -> Bool #

length :: Node a -> Int #

elem :: Eq a => a -> Node a -> Bool #

maximum :: Ord a => Node a -> a #

minimum :: Ord a => Node a -> a #

sum :: Num a => Node a -> a #

product :: Num a => Node a -> a #

Foldable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Elem m -> m #

foldMap :: Monoid m => (a -> m) -> Elem a -> m #

foldr :: (a -> b -> b) -> b -> Elem a -> b #

foldr' :: (a -> b -> b) -> b -> Elem a -> b #

foldl :: (b -> a -> b) -> b -> Elem a -> b #

foldl' :: (b -> a -> b) -> b -> Elem a -> b #

foldr1 :: (a -> a -> a) -> Elem a -> a #

foldl1 :: (a -> a -> a) -> Elem a -> a #

toList :: Elem a -> [a] #

null :: Elem a -> Bool #

length :: Elem a -> Int #

elem :: Eq a => a -> Elem a -> Bool #

maximum :: Ord a => Elem a -> a #

minimum :: Ord a => Elem a -> a #

sum :: Num a => Elem a -> a #

product :: Num a => Elem a -> a #

Foldable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewL m -> m #

foldMap :: Monoid m => (a -> m) -> ViewL a -> m #

foldr :: (a -> b -> b) -> b -> ViewL a -> b #

foldr' :: (a -> b -> b) -> b -> ViewL a -> b #

foldl :: (b -> a -> b) -> b -> ViewL a -> b #

foldl' :: (b -> a -> b) -> b -> ViewL a -> b #

foldr1 :: (a -> a -> a) -> ViewL a -> a #

foldl1 :: (a -> a -> a) -> ViewL a -> a #

toList :: ViewL a -> [a] #

null :: ViewL a -> Bool #

length :: ViewL a -> Int #

elem :: Eq a => a -> ViewL a -> Bool #

maximum :: Ord a => ViewL a -> a #

minimum :: Ord a => ViewL a -> a #

sum :: Num a => ViewL a -> a #

product :: Num a => ViewL a -> a #

Foldable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewR m -> m #

foldMap :: Monoid m => (a -> m) -> ViewR a -> m #

foldr :: (a -> b -> b) -> b -> ViewR a -> b #

foldr' :: (a -> b -> b) -> b -> ViewR a -> b #

foldl :: (b -> a -> b) -> b -> ViewR a -> b #

foldl' :: (b -> a -> b) -> b -> ViewR a -> b #

foldr1 :: (a -> a -> a) -> ViewR a -> a #

foldl1 :: (a -> a -> a) -> ViewR a -> a #

toList :: ViewR a -> [a] #

null :: ViewR a -> Bool #

length :: ViewR a -> Int #

elem :: Eq a => a -> ViewR a -> Bool #

maximum :: Ord a => ViewR a -> a #

minimum :: Ord a => ViewR a -> a #

sum :: Num a => ViewR a -> a #

product :: Num a => ViewR a -> a #

Foldable Set 
Instance details

Defined in Data.Set.Internal

Methods

fold :: Monoid m => Set m -> m #

foldMap :: Monoid m => (a -> m) -> Set a -> m #

foldr :: (a -> b -> b) -> b -> Set a -> b #

foldr' :: (a -> b -> b) -> b -> Set a -> b #

foldl :: (b -> a -> b) -> b -> Set a -> b #

foldl' :: (b -> a -> b) -> b -> Set a -> b #

foldr1 :: (a -> a -> a) -> Set a -> a #

foldl1 :: (a -> a -> a) -> Set a -> a #

toList :: Set a -> [a] #

null :: Set a -> Bool #

length :: Set a -> Int #

elem :: Eq a => a -> Set a -> Bool #

maximum :: Ord a => Set a -> a #

minimum :: Ord a => Set a -> a #

sum :: Num a => Set a -> a #

product :: Num a => Set a -> a #

Foldable I # 
Instance details

Defined in Data.Comp.Multi.HFunctor

Methods

fold :: Monoid m => I m -> m #

foldMap :: Monoid m => (a -> m) -> I a -> m #

foldr :: (a -> b -> b) -> b -> I a -> b #

foldr' :: (a -> b -> b) -> b -> I a -> b #

foldl :: (b -> a -> b) -> b -> I a -> b #

foldl' :: (b -> a -> b) -> b -> I a -> b #

foldr1 :: (a -> a -> a) -> I a -> a #

foldl1 :: (a -> a -> a) -> I a -> a #

toList :: I a -> [a] #

null :: I a -> Bool #

length :: I a -> Int #

elem :: Eq a => a -> I a -> Bool #

maximum :: Ord a => I a -> a #

minimum :: Ord a => I a -> a #

sum :: Num a => I a -> a #

product :: Num a => I a -> a #

Foldable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

toList :: Either a a0 -> [a0] #

null :: Either a a0 -> Bool #

length :: Either a a0 -> Int #

elem :: Eq a0 => a0 -> Either a a0 -> Bool #

maximum :: Ord a0 => Either a a0 -> a0 #

minimum :: Ord a0 => Either a a0 -> a0 #

sum :: Num a0 => Either a a0 -> a0 #

product :: Num a0 => Either a a0 -> a0 #

Foldable (V1 :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => V1 m -> m #

foldMap :: Monoid m => (a -> m) -> V1 a -> m #

foldr :: (a -> b -> b) -> b -> V1 a -> b #

foldr' :: (a -> b -> b) -> b -> V1 a -> b #

foldl :: (b -> a -> b) -> b -> V1 a -> b #

foldl' :: (b -> a -> b) -> b -> V1 a -> b #

foldr1 :: (a -> a -> a) -> V1 a -> a #

foldl1 :: (a -> a -> a) -> V1 a -> a #

toList :: V1 a -> [a] #

null :: V1 a -> Bool #

length :: V1 a -> Int #

elem :: Eq a => a -> V1 a -> Bool #

maximum :: Ord a => V1 a -> a #

minimum :: Ord a => V1 a -> a #

sum :: Num a => V1 a -> a #

product :: Num a => V1 a -> a #

Foldable (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => U1 m -> m #

foldMap :: Monoid m => (a -> m) -> U1 a -> m #

foldr :: (a -> b -> b) -> b -> U1 a -> b #

foldr' :: (a -> b -> b) -> b -> U1 a -> b #

foldl :: (b -> a -> b) -> b -> U1 a -> b #

foldl' :: (b -> a -> b) -> b -> U1 a -> b #

foldr1 :: (a -> a -> a) -> U1 a -> a #

foldl1 :: (a -> a -> a) -> U1 a -> a #

toList :: U1 a -> [a] #

null :: U1 a -> Bool #

length :: U1 a -> Int #

elem :: Eq a => a -> U1 a -> Bool #

maximum :: Ord a => U1 a -> a #

minimum :: Ord a => U1 a -> a #

sum :: Num a => U1 a -> a #

product :: Num a => U1 a -> a #

Foldable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (a, m) -> m #

foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m #

foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

toList :: (a, a0) -> [a0] #

null :: (a, a0) -> Bool #

length :: (a, a0) -> Int #

elem :: Eq a0 => a0 -> (a, a0) -> Bool #

maximum :: Ord a0 => (a, a0) -> a0 #

minimum :: Ord a0 => (a, a0) -> a0 #

sum :: Num a0 => (a, a0) -> a0 #

product :: Num a0 => (a, a0) -> a0 #

Foldable (Array i)

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Foldable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

toList :: Arg a a0 -> [a0] #

null :: Arg a a0 -> Bool #

length :: Arg a a0 -> Int #

elem :: Eq a0 => a0 -> Arg a a0 -> Bool #

maximum :: Ord a0 => Arg a a0 -> a0 #

minimum :: Ord a0 => Arg a a0 -> a0 #

sum :: Num a0 => Arg a a0 -> a0 #

product :: Num a0 => Arg a a0 -> a0 #

Foldable (Proxy :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m #

foldr :: (a -> b -> b) -> b -> Proxy a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b #

foldl :: (b -> a -> b) -> b -> Proxy a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b #

foldr1 :: (a -> a -> a) -> Proxy a -> a #

foldl1 :: (a -> a -> a) -> Proxy a -> a #

toList :: Proxy a -> [a] #

null :: Proxy a -> Bool #

length :: Proxy a -> Int #

elem :: Eq a => a -> Proxy a -> Bool #

maximum :: Ord a => Proxy a -> a #

minimum :: Ord a => Proxy a -> a #

sum :: Num a => Proxy a -> a #

product :: Num a => Proxy a -> a #

Foldable (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Foldable f => Foldable (ListT f) 
Instance details

Defined in Control.Monad.Trans.List

Methods

fold :: Monoid m => ListT f m -> m #

foldMap :: Monoid m => (a -> m) -> ListT f a -> m #

foldr :: (a -> b -> b) -> b -> ListT f a -> b #

foldr' :: (a -> b -> b) -> b -> ListT f a -> b #

foldl :: (b -> a -> b) -> b -> ListT f a -> b #

foldl' :: (b -> a -> b) -> b -> ListT f a -> b #

foldr1 :: (a -> a -> a) -> ListT f a -> a #

foldl1 :: (a -> a -> a) -> ListT f a -> a #

toList :: ListT f a -> [a] #

null :: ListT f a -> Bool #

length :: ListT f a -> Int #

elem :: Eq a => a -> ListT f a -> Bool #

maximum :: Ord a => ListT f a -> a #

minimum :: Ord a => ListT f a -> a #

sum :: Num a => ListT f a -> a #

product :: Num a => ListT f a -> a #

Foldable f => Foldable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

fold :: Monoid m => MaybeT f m -> m #

foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m #

foldr :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldl :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldr1 :: (a -> a -> a) -> MaybeT f a -> a #

foldl1 :: (a -> a -> a) -> MaybeT f a -> a #

toList :: MaybeT f a -> [a] #

null :: MaybeT f a -> Bool #

length :: MaybeT f a -> Int #

elem :: Eq a => a -> MaybeT f a -> Bool #

maximum :: Ord a => MaybeT f a -> a #

minimum :: Ord a => MaybeT f a -> a #

sum :: Num a => MaybeT f a -> a #

product :: Num a => MaybeT f a -> a #

Foldable (NumMap k) # 
Instance details

Defined in Data.Comp.Mapping

Methods

fold :: Monoid m => NumMap k m -> m #

foldMap :: Monoid m => (a -> m) -> NumMap k a -> m #

foldr :: (a -> b -> b) -> b -> NumMap k a -> b #

foldr' :: (a -> b -> b) -> b -> NumMap k a -> b #

foldl :: (b -> a -> b) -> b -> NumMap k a -> b #

foldl' :: (b -> a -> b) -> b -> NumMap k a -> b #

foldr1 :: (a -> a -> a) -> NumMap k a -> a #

foldl1 :: (a -> a -> a) -> NumMap k a -> a #

toList :: NumMap k a -> [a] #

null :: NumMap k a -> Bool #

length :: NumMap k a -> Int #

elem :: Eq a => a -> NumMap k a -> Bool #

maximum :: Ord a => NumMap k a -> a #

minimum :: Ord a => NumMap k a -> a #

sum :: Num a => NumMap k a -> a #

product :: Num a => NumMap k a -> a #

Foldable (K a) # 
Instance details

Defined in Data.Comp.Multi.HFunctor

Methods

fold :: Monoid m => K a m -> m #

foldMap :: Monoid m => (a0 -> m) -> K a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> K a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> K a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> K a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> K a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> K a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> K a a0 -> a0 #

toList :: K a a0 -> [a0] #

null :: K a a0 -> Bool #

length :: K a a0 -> Int #

elem :: Eq a0 => a0 -> K a a0 -> Bool #

maximum :: Ord a0 => K a a0 -> a0 #

minimum :: Ord a0 => K a a0 -> a0 #

sum :: Num a0 => K a a0 -> a0 #

product :: Num a0 => K a a0 -> a0 #

Foldable f => Foldable (Rec1 f) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a #

toList :: Rec1 f a -> [a] #

null :: Rec1 f a -> Bool #

length :: Rec1 f a -> Int #

elem :: Eq a => a -> Rec1 f a -> Bool #

maximum :: Ord a => Rec1 f a -> a #

minimum :: Ord a => Rec1 f a -> a #

sum :: Num a => Rec1 f a -> a #

product :: Num a => Rec1 f a -> a #

Foldable (URec Char :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m #

foldr :: (a -> b -> b) -> b -> URec Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b #

foldl :: (b -> a -> b) -> b -> URec Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b #

foldr1 :: (a -> a -> a) -> URec Char a -> a #

foldl1 :: (a -> a -> a) -> URec Char a -> a #

toList :: URec Char a -> [a] #

null :: URec Char a -> Bool #

length :: URec Char a -> Int #

elem :: Eq a => a -> URec Char a -> Bool #

maximum :: Ord a => URec Char a -> a #

minimum :: Ord a => URec Char a -> a #

sum :: Num a => URec Char a -> a #

product :: Num a => URec Char a -> a #

Foldable (URec Double :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m #

foldr :: (a -> b -> b) -> b -> URec Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b #

foldl :: (b -> a -> b) -> b -> URec Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b #

foldr1 :: (a -> a -> a) -> URec Double a -> a #

foldl1 :: (a -> a -> a) -> URec Double a -> a #

toList :: URec Double a -> [a] #

null :: URec Double a -> Bool #

length :: URec Double a -> Int #

elem :: Eq a => a -> URec Double a -> Bool #

maximum :: Ord a => URec Double a -> a #

minimum :: Ord a => URec Double a -> a #

sum :: Num a => URec Double a -> a #

product :: Num a => URec Double a -> a #

Foldable (URec Float :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m #

foldr :: (a -> b -> b) -> b -> URec Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b #

foldl :: (b -> a -> b) -> b -> URec Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b #

foldr1 :: (a -> a -> a) -> URec Float a -> a #

foldl1 :: (a -> a -> a) -> URec Float a -> a #

toList :: URec Float a -> [a] #

null :: URec Float a -> Bool #

length :: URec Float a -> Int #

elem :: Eq a => a -> URec Float a -> Bool #

maximum :: Ord a => URec Float a -> a #

minimum :: Ord a => URec Float a -> a #

sum :: Num a => URec Float a -> a #

product :: Num a => URec Float a -> a #

Foldable (URec Int :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m #

foldr :: (a -> b -> b) -> b -> URec Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b #

foldl :: (b -> a -> b) -> b -> URec Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b #

foldr1 :: (a -> a -> a) -> URec Int a -> a #

foldl1 :: (a -> a -> a) -> URec Int a -> a #

toList :: URec Int a -> [a] #

null :: URec Int a -> Bool #

length :: URec Int a -> Int #

elem :: Eq a => a -> URec Int a -> Bool #

maximum :: Ord a => URec Int a -> a #

minimum :: Ord a => URec Int a -> a #

sum :: Num a => URec Int a -> a #

product :: Num a => URec Int a -> a #

Foldable (URec Word :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m #

foldr :: (a -> b -> b) -> b -> URec Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b #

foldl :: (b -> a -> b) -> b -> URec Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b #

foldr1 :: (a -> a -> a) -> URec Word a -> a #

foldl1 :: (a -> a -> a) -> URec Word a -> a #

toList :: URec Word a -> [a] #

null :: URec Word a -> Bool #

length :: URec Word a -> Int #

elem :: Eq a => a -> URec Word a -> Bool #

maximum :: Ord a => URec Word a -> a #

minimum :: Ord a => URec Word a -> a #

sum :: Num a => URec Word a -> a #

product :: Num a => URec Word a -> a #

Foldable (URec (Ptr ()) :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

toList :: URec (Ptr ()) a -> [a] #

null :: URec (Ptr ()) a -> Bool #

length :: URec (Ptr ()) a -> Int #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool #

maximum :: Ord a => URec (Ptr ()) a -> a #

minimum :: Ord a => URec (Ptr ()) a -> a #

sum :: Num a => URec (Ptr ()) a -> a #

product :: Num a => URec (Ptr ()) a -> a #

Foldable (Const m :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Foldable f => Foldable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

fold :: Monoid m => IdentityT f m -> m #

foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m #

foldr :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldl :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldr1 :: (a -> a -> a) -> IdentityT f a -> a #

foldl1 :: (a -> a -> a) -> IdentityT f a -> a #

toList :: IdentityT f a -> [a] #

null :: IdentityT f a -> Bool #

length :: IdentityT f a -> Int #

elem :: Eq a => a -> IdentityT f a -> Bool #

maximum :: Ord a => IdentityT f a -> a #

minimum :: Ord a => IdentityT f a -> a #

sum :: Num a => IdentityT f a -> a #

product :: Num a => IdentityT f a -> a #

Foldable f => Foldable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fold :: Monoid m => ErrorT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m #

foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldr1 :: (a -> a -> a) -> ErrorT e f a -> a #

foldl1 :: (a -> a -> a) -> ErrorT e f a -> a #

toList :: ErrorT e f a -> [a] #

null :: ErrorT e f a -> Bool #

length :: ErrorT e f a -> Int #

elem :: Eq a => a -> ErrorT e f a -> Bool #

maximum :: Ord a => ErrorT e f a -> a #

minimum :: Ord a => ErrorT e f a -> a #

sum :: Num a => ErrorT e f a -> a #

product :: Num a => ErrorT e f a -> a #

Foldable f => Foldable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

fold :: Monoid m => ExceptT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m #

foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldr1 :: (a -> a -> a) -> ExceptT e f a -> a #

foldl1 :: (a -> a -> a) -> ExceptT e f a -> a #

toList :: ExceptT e f a -> [a] #

null :: ExceptT e f a -> Bool #

length :: ExceptT e f a -> Int #

elem :: Eq a => a -> ExceptT e f a -> Bool #

maximum :: Ord a => ExceptT e f a -> a #

minimum :: Ord a => ExceptT e f a -> a #

sum :: Num a => ExceptT e f a -> a #

product :: Num a => ExceptT e f a -> a #

Foldable f => Foldable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

fold :: Monoid m => WriterT w f m -> m #

foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m #

foldr :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldl :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldr1 :: (a -> a -> a) -> WriterT w f a -> a #

foldl1 :: (a -> a -> a) -> WriterT w f a -> a #

toList :: WriterT w f a -> [a] #

null :: WriterT w f a -> Bool #

length :: WriterT w f a -> Int #

elem :: Eq a => a -> WriterT w f a -> Bool #

maximum :: Ord a => WriterT w f a -> a #

minimum :: Ord a => WriterT w f a -> a #

sum :: Num a => WriterT w f a -> a #

product :: Num a => WriterT w f a -> a #

Foldable f => Foldable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

fold :: Monoid m => WriterT w f m -> m #

foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m #

foldr :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldl :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldr1 :: (a -> a -> a) -> WriterT w f a -> a #

foldl1 :: (a -> a -> a) -> WriterT w f a -> a #

toList :: WriterT w f a -> [a] #

null :: WriterT w f a -> Bool #

length :: WriterT w f a -> Int #

elem :: Eq a => a -> WriterT w f a -> Bool #

maximum :: Ord a => WriterT w f a -> a #

minimum :: Ord a => WriterT w f a -> a #

sum :: Num a => WriterT w f a -> a #

product :: Num a => WriterT w f a -> a #

Foldable (Constant a :: * -> *) 
Instance details

Defined in Data.Functor.Constant

Methods

fold :: Monoid m => Constant a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 #

toList :: Constant a a0 -> [a0] #

null :: Constant a a0 -> Bool #

length :: Constant a a0 -> Int #

elem :: Eq a0 => a0 -> Constant a a0 -> Bool #

maximum :: Ord a0 => Constant a a0 -> a0 #

minimum :: Ord a0 => Constant a a0 -> a0 #

sum :: Num a0 => Constant a a0 -> a0 #

product :: Num a0 => Constant a a0 -> a0 #

Foldable f => Foldable (Cxt h f) # 
Instance details

Defined in Data.Comp.Term

Methods

fold :: Monoid m => Cxt h f m -> m #

foldMap :: Monoid m => (a -> m) -> Cxt h f a -> m #

foldr :: (a -> b -> b) -> b -> Cxt h f a -> b #

foldr' :: (a -> b -> b) -> b -> Cxt h f a -> b #

foldl :: (b -> a -> b) -> b -> Cxt h f a -> b #

foldl' :: (b -> a -> b) -> b -> Cxt h f a -> b #

foldr1 :: (a -> a -> a) -> Cxt h f a -> a #

foldl1 :: (a -> a -> a) -> Cxt h f a -> a #

toList :: Cxt h f a -> [a] #

null :: Cxt h f a -> Bool #

length :: Cxt h f a -> Int #

elem :: Eq a => a -> Cxt h f a -> Bool #

maximum :: Ord a => Cxt h f a -> a #

minimum :: Ord a => Cxt h f a -> a #

sum :: Num a => Cxt h f a -> a #

product :: Num a => Cxt h f a -> a #

Foldable (K1 i c :: * -> *) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b #

foldr1 :: (a -> a -> a) -> K1 i c a -> a #

foldl1 :: (a -> a -> a) -> K1 i c a -> a #

toList :: K1 i c a -> [a] #

null :: K1 i c a -> Bool #

length :: K1 i c a -> Int #

elem :: Eq a => a -> K1 i c a -> Bool #

maximum :: Ord a => K1 i c a -> a #

minimum :: Ord a => K1 i c a -> a #

sum :: Num a => K1 i c a -> a #

product :: Num a => K1 i c a -> a #

(Foldable f, Foldable g) => Foldable (f :+: g) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a #

toList :: (f :+: g) a -> [a] #

null :: (f :+: g) a -> Bool #

length :: (f :+: g) a -> Int #

elem :: Eq a => a -> (f :+: g) a -> Bool #

maximum :: Ord a => (f :+: g) a -> a #

minimum :: Ord a => (f :+: g) a -> a #

sum :: Num a => (f :+: g) a -> a #

product :: Num a => (f :+: g) a -> a #

(Foldable f, Foldable g) => Foldable (f :*: g) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a #

toList :: (f :*: g) a -> [a] #

null :: (f :*: g) a -> Bool #

length :: (f :*: g) a -> Int #

elem :: Eq a => a -> (f :*: g) a -> Bool #

maximum :: Ord a => (f :*: g) a -> a #

minimum :: Ord a => (f :*: g) a -> a #

sum :: Num a => (f :*: g) a -> a #

product :: Num a => (f :*: g) a -> a #

(Foldable f, Foldable g) => Foldable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fold :: Monoid m => Product f g m -> m #

foldMap :: Monoid m => (a -> m) -> Product f g a -> m #

foldr :: (a -> b -> b) -> b -> Product f g a -> b #

foldr' :: (a -> b -> b) -> b -> Product f g a -> b #

foldl :: (b -> a -> b) -> b -> Product f g a -> b #

foldl' :: (b -> a -> b) -> b -> Product f g a -> b #

foldr1 :: (a -> a -> a) -> Product f g a -> a #

foldl1 :: (a -> a -> a) -> Product f g a -> a #

toList :: Product f g a -> [a] #

null :: Product f g a -> Bool #

length :: Product f g a -> Int #

elem :: Eq a => a -> Product f g a -> Bool #

maximum :: Ord a => Product f g a -> a #

minimum :: Ord a => Product f g a -> a #

sum :: Num a => Product f g a -> a #

product :: Num a => Product f g a -> a #

(Foldable f, Foldable g) => Foldable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fold :: Monoid m => Sum f g m -> m #

foldMap :: Monoid m => (a -> m) -> Sum f g a -> m #

foldr :: (a -> b -> b) -> b -> Sum f g a -> b #

foldr' :: (a -> b -> b) -> b -> Sum f g a -> b #

foldl :: (b -> a -> b) -> b -> Sum f g a -> b #

foldl' :: (b -> a -> b) -> b -> Sum f g a -> b #

foldr1 :: (a -> a -> a) -> Sum f g a -> a #

foldl1 :: (a -> a -> a) -> Sum f g a -> a #

toList :: Sum f g a -> [a] #

null :: Sum f g a -> Bool #

length :: Sum f g a -> Int #

elem :: Eq a => a -> Sum f g a -> Bool #

maximum :: Ord a => Sum f g a -> a #

minimum :: Ord a => Sum f g a -> a #

sum :: Num a => Sum f g a -> a #

product :: Num a => Sum f g a -> a #

Foldable f => Foldable (f :&: a) # 
Instance details

Defined in Data.Comp.Ops

Methods

fold :: Monoid m => (f :&: a) m -> m #

foldMap :: Monoid m => (a0 -> m) -> (f :&: a) a0 -> m #

foldr :: (a0 -> b -> b) -> b -> (f :&: a) a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> (f :&: a) a0 -> b #

foldl :: (b -> a0 -> b) -> b -> (f :&: a) a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> (f :&: a) a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> (f :&: a) a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> (f :&: a) a0 -> a0 #

toList :: (f :&: a) a0 -> [a0] #

null :: (f :&: a) a0 -> Bool #

length :: (f :&: a) a0 -> Int #

elem :: Eq a0 => a0 -> (f :&: a) a0 -> Bool #

maximum :: Ord a0 => (f :&: a) a0 -> a0 #

minimum :: Ord a0 => (f :&: a) a0 -> a0 #

sum :: Num a0 => (f :&: a) a0 -> a0 #

product :: Num a0 => (f :&: a) a0 -> a0 #

(Foldable f, Foldable g) => Foldable (f :*: g) # 
Instance details

Defined in Data.Comp.Ops

Methods

fold :: Monoid m => (f :*: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a #

toList :: (f :*: g) a -> [a] #

null :: (f :*: g) a -> Bool #

length :: (f :*: g) a -> Int #

elem :: Eq a => a -> (f :*: g) a -> Bool #

maximum :: Ord a => (f :*: g) a -> a #

minimum :: Ord a => (f :*: g) a -> a #

sum :: Num a => (f :*: g) a -> a #

product :: Num a => (f :*: g) a -> a #

(Foldable f, Foldable g) => Foldable (f :+: g) # 
Instance details

Defined in Data.Comp.Ops

Methods

fold :: Monoid m => (f :+: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a #

toList :: (f :+: g) a -> [a] #

null :: (f :+: g) a -> Bool #

length :: (f :+: g) a -> Int #

elem :: Eq a => a -> (f :+: g) a -> Bool #

maximum :: Ord a => (f :+: g) a -> a #

minimum :: Ord a => (f :+: g) a -> a #

sum :: Num a => (f :+: g) a -> a #

product :: Num a => (f :+: g) a -> a #

Foldable f => Foldable (M1 i c f) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a #

toList :: M1 i c f a -> [a] #

null :: M1 i c f a -> Bool #

length :: M1 i c f a -> Int #

elem :: Eq a => a -> M1 i c f a -> Bool #

maximum :: Ord a => M1 i c f a -> a #

minimum :: Ord a => M1 i c f a -> a #

sum :: Num a => M1 i c f a -> a #

product :: Num a => M1 i c f a -> a #

(Foldable f, Foldable g) => Foldable (f :.: g) 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a #

toList :: (f :.: g) a -> [a] #

null :: (f :.: g) a -> Bool #

length :: (f :.: g) a -> Int #

elem :: Eq a => a -> (f :.: g) a -> Bool #

maximum :: Ord a => (f :.: g) a -> a #

minimum :: Ord a => (f :.: g) a -> a #

sum :: Num a => (f :.: g) a -> a #

product :: Num a => (f :.: g) a -> a #

(Foldable f, Foldable g) => Foldable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fold :: Monoid m => Compose f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose f g a -> b #

foldr1 :: (a -> a -> a) -> Compose f g a -> a #

foldl1 :: (a -> a -> a) -> Compose f g a -> a #

toList :: Compose f g a -> [a] #

null :: Compose f g a -> Bool #

length :: Compose f g a -> Int #

elem :: Eq a => a -> Compose f g a -> Bool #

maximum :: Ord a => Compose f g a -> a #

minimum :: Ord a => Compose f g a -> a #

sum :: Num a => Compose f g a -> a #

product :: Num a => Compose f g a -> a #

makeFoldable :: Name -> Q [Dec] Source #

Derive an instance of Foldable for a type constructor of any first-order kind taking at least one argument.

Traversable

class (Functor t, Foldable t) => Traversable (t :: * -> *) #

Functors representing data structures that can be traversed from left to right.

A definition of traverse must satisfy the following laws:

naturality
t . traverse f = traverse (t . f) for every applicative transformation t
identity
traverse Identity = Identity
composition
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f

A definition of sequenceA must satisfy the following laws:

naturality
t . sequenceA = sequenceA . fmap t for every applicative transformation t
identity
sequenceA . fmap Identity = Identity
composition
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations, i.e.

and the identity functor Identity and composition of functors Compose are defined as

  newtype Identity a = Identity a

  instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

  instance Applicative Identity where
    pure x = Identity x
    Identity f <*> Identity x = Identity (f x)

  newtype Compose f g a = Compose (f (g a))

  instance (Functor f, Functor g) => Functor (Compose f g) where
    fmap f (Compose x) = Compose (fmap (fmap f) x)

  instance (Applicative f, Applicative g) => Applicative (Compose f g) where
    pure x = Compose (pure (pure x))
    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

(The naturality law is implied by parametricity.)

Instances are similar to Functor, e.g. given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Traversable Tree where
   traverse f Empty = pure Empty
   traverse f (Leaf x) = Leaf <$> f x
   traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r

This is suitable even for abstract types, as the laws for <*> imply a form of associativity.

The superclass instances should satisfy the following:

Minimal complete definition

traverse | sequenceA

Instances
Traversable []

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Par1 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable Complex 
Instance details

Defined in Data.Complex

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Identity 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable Tree 
Instance details

Defined in Data.Tree

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable I # 
Instance details

Defined in Data.Comp.Multi.HFunctor

Methods

traverse :: Applicative f => (a -> f b) -> I a -> f (I b) #

sequenceA :: Applicative f => I (f a) -> f (I a) #

mapM :: Monad m => (a -> m b) -> I a -> m (I b) #

sequence :: Monad m => I (m a) -> m (I a) #

Traversable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) #

Traversable (V1 :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Traversable (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) #

sequence :: Monad m => U1 (m a) -> m (U1 a) #

Traversable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) #

sequence :: Monad m => (a, m a0) -> m (a, a0) #

Ix i => Traversable (Array i)

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Traversable (Proxy :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) #

Traversable (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Traversable f => Traversable (ListT f) 
Instance details

Defined in Control.Monad.Trans.List

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ListT f a -> f0 (ListT f b) #

sequenceA :: Applicative f0 => ListT f (f0 a) -> f0 (ListT f a) #

mapM :: Monad m => (a -> m b) -> ListT f a -> m (ListT f b) #

sequence :: Monad m => ListT f (m a) -> m (ListT f a) #

Traversable f => Traversable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeT f a -> f0 (MaybeT f b) #

sequenceA :: Applicative f0 => MaybeT f (f0 a) -> f0 (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Traversable (NumMap k) # 
Instance details

Defined in Data.Comp.Mapping

Methods

traverse :: Applicative f => (a -> f b) -> NumMap k a -> f (NumMap k b) #

sequenceA :: Applicative f => NumMap k (f a) -> f (NumMap k a) #

mapM :: Monad m => (a -> m b) -> NumMap k a -> m (NumMap k b) #

sequence :: Monad m => NumMap k (m a) -> m (NumMap k a) #

Traversable (K a) # 
Instance details

Defined in Data.Comp.Multi.HFunctor

Methods

traverse :: Applicative f => (a0 -> f b) -> K a a0 -> f (K a b) #

sequenceA :: Applicative f => K a (f a0) -> f (K a a0) #

mapM :: Monad m => (a0 -> m b) -> K a a0 -> m (K a b) #

sequence :: Monad m => K a (m a0) -> m (K a a0) #

Traversable f => Traversable (Rec1 f) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) #

Traversable (URec Char :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) #

Traversable (URec Double :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) #

Traversable (URec Float :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) #

Traversable (URec Int :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) #

Traversable (URec Word :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) #

Traversable (URec (Ptr ()) :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) #

Traversable (Const m :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Traversable f => Traversable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

traverse :: Applicative f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequenceA :: Applicative f0 => IdentityT f (f0 a) -> f0 (IdentityT f a) #

mapM :: Monad m => (a -> m b) -> IdentityT f a -> m (IdentityT f b) #

sequence :: Monad m => IdentityT f (m a) -> m (IdentityT f a) #

Traversable f => Traversable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ErrorT e f a -> f0 (ErrorT e f b) #

sequenceA :: Applicative f0 => ErrorT e f (f0 a) -> f0 (ErrorT e f a) #

mapM :: Monad m => (a -> m b) -> ErrorT e f a -> m (ErrorT e f b) #

sequence :: Monad m => ErrorT e f (m a) -> m (ErrorT e f a) #

Traversable f => Traversable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ExceptT e f a -> f0 (ExceptT e f b) #

sequenceA :: Applicative f0 => ExceptT e f (f0 a) -> f0 (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

Traversable f => Traversable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

traverse :: Applicative f0 => (a -> f0 b) -> WriterT w f a -> f0 (WriterT w f b) #

sequenceA :: Applicative f0 => WriterT w f (f0 a) -> f0 (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable f => Traversable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

traverse :: Applicative f0 => (a -> f0 b) -> WriterT w f a -> f0 (WriterT w f b) #

sequenceA :: Applicative f0 => WriterT w f (f0 a) -> f0 (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable (Constant a :: * -> *) 
Instance details

Defined in Data.Functor.Constant

Methods

traverse :: Applicative f => (a0 -> f b) -> Constant a a0 -> f (Constant a b) #

sequenceA :: Applicative f => Constant a (f a0) -> f (Constant a a0) #

mapM :: Monad m => (a0 -> m b) -> Constant a a0 -> m (Constant a b) #

sequence :: Monad m => Constant a (m a0) -> m (Constant a a0) #

Traversable f => Traversable (Cxt h f) # 
Instance details

Defined in Data.Comp.Term

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Cxt h f a -> f0 (Cxt h f b) #

sequenceA :: Applicative f0 => Cxt h f (f0 a) -> f0 (Cxt h f a) #

mapM :: Monad m => (a -> m b) -> Cxt h f a -> m (Cxt h f b) #

sequence :: Monad m => Cxt h f (m a) -> m (Cxt h f a) #

Traversable (K1 i c :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) #

(Traversable f, Traversable g) => Traversable (f :+: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

(Traversable f, Traversable g) => Traversable (f :*: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Traversable f, Traversable g) => Traversable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequenceA :: Applicative f0 => Product f g (f0 a) -> f0 (Product f g a) #

mapM :: Monad m => (a -> m b) -> Product f g a -> m (Product f g b) #

sequence :: Monad m => Product f g (m a) -> m (Product f g a) #

(Traversable f, Traversable g) => Traversable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequenceA :: Applicative f0 => Sum f g (f0 a) -> f0 (Sum f g a) #

mapM :: Monad m => (a -> m b) -> Sum f g a -> m (Sum f g b) #

sequence :: Monad m => Sum f g (m a) -> m (Sum f g a) #

Traversable f => Traversable (f :&: a) # 
Instance details

Defined in Data.Comp.Ops

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> (f :&: a) a0 -> f0 ((f :&: a) b) #

sequenceA :: Applicative f0 => (f :&: a) (f0 a0) -> f0 ((f :&: a) a0) #

mapM :: Monad m => (a0 -> m b) -> (f :&: a) a0 -> m ((f :&: a) b) #

sequence :: Monad m => (f :&: a) (m a0) -> m ((f :&: a) a0) #

(Traversable f, Traversable g) => Traversable (f :*: g) # 
Instance details

Defined in Data.Comp.Ops

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Traversable f, Traversable g) => Traversable (f :+: g) # 
Instance details

Defined in Data.Comp.Ops

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

Traversable f => Traversable (M1 i c f) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) #

(Traversable f, Traversable g) => Traversable (f :.: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) #

(Traversable f, Traversable g) => Traversable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) #

makeTraversable :: Name -> Q [Dec] Source #

Derive an instance of Traversable for a type constructor of any first-order kind taking at least one argument.

HaskellStrict

makeHaskellStrict :: Name -> Q [Dec] Source #

Derive an instance of HaskellStrict for a type constructor of any first-order kind taking at least one argument.

haskellStrict :: (Monad m, HaskellStrict f, f :<: (m :+: g)) => f (TermT m g) -> TermT m g Source #

haskellStrict' :: (Monad m, HaskellStrict f, f :<: (m :+: g)) => f (TermT m g) -> TermT m g Source #

Arbitrary

class ArbitraryF f where Source #

Signature arbitration. An instance ArbitraryF f gives rise to an instance Arbitrary (Term f).

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (f v))] Source #

arbitraryF :: Arbitrary v => Gen (f v) Source #

shrinkF :: Arbitrary v => f v -> [f v] Source #

Instances
ArbitraryF [] Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen [v])] Source #

arbitraryF :: Arbitrary v => Gen [v] Source #

shrinkF :: Arbitrary v => [v] -> [[v]] Source #

ArbitraryF Maybe Source # 
Instance details

Defined in Data.Comp.Arbitrary

Arbitrary b => ArbitraryF ((,) b) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, v) Source #

shrinkF :: Arbitrary v => (b, v) -> [(b, v)] Source #

ArbitraryF f => ArbitraryF (Context f) Source #

This lifts instances of ArbitraryF to instances of ArbitraryF for the corresponding context functor.

Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (Context f v))] Source #

arbitraryF :: Arbitrary v => Gen (Context f v) Source #

shrinkF :: Arbitrary v => Context f v -> [Context f v] Source #

(Arbitrary b, Arbitrary c) => ArbitraryF ((,,) b c) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, v) Source #

shrinkF :: Arbitrary v => (b, c, v) -> [(b, c, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d) => ArbitraryF ((,,,) b c d) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, v) Source #

shrinkF :: Arbitrary v => (b, c, d, v) -> [(b, c, d, v)] Source #

(ArbitraryF f, Arbitrary p) => ArbitraryF (f :&: p) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen ((f :&: p) v))] Source #

arbitraryF :: Arbitrary v => Gen ((f :&: p) v) Source #

shrinkF :: Arbitrary v => (f :&: p) v -> [(f :&: p) v] Source #

(ArbitraryF f, ArbitraryF g) => ArbitraryF (f :+: g) Source #

Instances of ArbitraryF are closed under forming sums.

Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen ((f :+: g) v))] Source #

arbitraryF :: Arbitrary v => Gen ((f :+: g) v) Source #

shrinkF :: Arbitrary v => (f :+: g) v -> [(f :+: g) v] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e) => ArbitraryF ((,,,,) b c d e) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, v) -> [(b, c, d, e, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f) => ArbitraryF ((,,,,,) b c d e f) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, f, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, f, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, f, v) -> [(b, c, d, e, f, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g) => ArbitraryF ((,,,,,,) b c d e f g) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, f, g, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, f, g, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, f, g, v) -> [(b, c, d, e, f, g, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h) => ArbitraryF ((,,,,,,,) b c d e f g h) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, f, g, h, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, f, g, h, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, f, g, h, v) -> [(b, c, d, e, f, g, h, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i) => ArbitraryF ((,,,,,,,,) b c d e f g h i) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, f, g, h, i, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, f, g, h, i, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, f, g, h, i, v) -> [(b, c, d, e, f, g, h, i, v)] Source #

(Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i, Arbitrary j) => ArbitraryF ((,,,,,,,,,) b c d e f g h i j) Source # 
Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitraryF' :: Arbitrary v => [(Int, Gen (b, c, d, e, f, g, h, i, j, v))] Source #

arbitraryF :: Arbitrary v => Gen (b, c, d, e, f, g, h, i, j, v) Source #

shrinkF :: Arbitrary v => (b, c, d, e, f, g, h, i, j, v) -> [(b, c, d, e, f, g, h, i, j, v)] Source #

makeArbitraryF :: Name -> Q [Dec] Source #

Derive an instance of ArbitraryF for a type constructor of any first-order kind taking at least one argument. It is necessary that all types that are used by the data type definition are themselves instances of Arbitrary.

class Arbitrary a where #

Random generation and shrinking of values.

QuickCheck provides Arbitrary instances for most types in base, except those which incur extra dependencies. For a wider range of Arbitrary instances see the quickcheck-instances package.

Minimal complete definition

arbitrary

Methods

arbitrary :: Gen a #

A generator for values of the given type.

It is worth spending time thinking about what sort of test data you want - good generators are often the difference between finding bugs and not finding them. You can use sample, label and classify to check the quality of your test data.

There is no generic arbitrary implementation included because we don't know how to make a high-quality one. If you want one, consider using the testing-feat or generic-random packages.

The QuickCheck manual goes into detail on how to write good generators. Make sure to look at it, especially if your type is recursive!

shrink :: a -> [a] #

Produces a (possibly) empty list of all the possible immediate shrinks of the given value.

The default implementation returns the empty list, so will not try to shrink the value. If your data type has no special invariants, you can enable shrinking by defining shrink = genericShrink, but by customising the behaviour of shrink you can often get simpler counterexamples.

Most implementations of shrink should try at least three things:

  1. Shrink a term to any of its immediate subterms. You can use subterms to do this.
  2. Recursively apply shrink to all immediate subterms. You can use recursivelyShrink to do this.
  3. Type-specific shrinkings such as replacing a constructor by a simpler constructor.

For example, suppose we have the following implementation of binary trees:

data Tree a = Nil | Branch a (Tree a) (Tree a)

We can then define shrink as follows:

shrink Nil = []
shrink (Branch x l r) =
  -- shrink Branch to Nil
  [Nil] ++
  -- shrink to subterms
  [l, r] ++
  -- recursively shrink subterms
  [Branch x' l' r' | (x', l', r') <- shrink (x, l, r)]

There are a couple of subtleties here:

  • QuickCheck tries the shrinking candidates in the order they appear in the list, so we put more aggressive shrinking steps (such as replacing the whole tree by Nil) before smaller ones (such as recursively shrinking the subtrees).
  • It is tempting to write the last line as [Branch x' l' r' | x' <- shrink x, l' <- shrink l, r' <- shrink r] but this is the wrong thing! It will force QuickCheck to shrink x, l and r in tandem, and shrinking will stop once one of the three is fully shrunk.

There is a fair bit of boilerplate in the code above. We can avoid it with the help of some generic functions. The function genericShrink tries shrinking a term to all of its subterms and, failing that, recursively shrinks the subterms. Using it, we can define shrink as:

shrink x = shrinkToNil x ++ genericShrink x
  where
    shrinkToNil Nil = []
    shrinkToNil (Branch _ l r) = [Nil]

genericShrink is a combination of subterms, which shrinks a term to any of its subterms, and recursivelyShrink, which shrinks all subterms of a term. These may be useful if you need a bit more control over shrinking than genericShrink gives you.

A final gotcha: we cannot define shrink as simply shrink x = Nil:genericShrink x as this shrinks Nil to Nil, and shrinking will go into an infinite loop.

If all this leaves you bewildered, you might try shrink = genericShrink to begin with, after deriving Generic for your type. However, if your data type has any special invariants, you will need to check that genericShrink can't break those invariants.

Instances
Arbitrary Bool 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Bool #

shrink :: Bool -> [Bool] #

Arbitrary Char 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Char #

shrink :: Char -> [Char] #

Arbitrary Double 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary Float 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Float #

shrink :: Float -> [Float] #

Arbitrary Int 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Int #

shrink :: Int -> [Int] #

Arbitrary Int8 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Int8 #

shrink :: Int8 -> [Int8] #

Arbitrary Int16 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Int16 #

shrink :: Int16 -> [Int16] #

Arbitrary Int32 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Int32 #

shrink :: Int32 -> [Int32] #

Arbitrary Int64 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Int64 #

shrink :: Int64 -> [Int64] #

Arbitrary Integer 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary Ordering 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary Word 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Word #

shrink :: Word -> [Word] #

Arbitrary Word8 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Word8 #

shrink :: Word8 -> [Word8] #

Arbitrary Word16 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary Word32 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary Word64 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary () 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen () #

shrink :: () -> [()] #

Arbitrary Version

Generates Version with non-empty non-negative versionBranch, and empty versionTags

Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary QCGen 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen QCGen #

shrink :: QCGen -> [QCGen] #

Arbitrary ASCIIString 
Instance details

Defined in Test.QuickCheck.Modifiers

Arbitrary UnicodeString 
Instance details

Defined in Test.QuickCheck.Modifiers

Arbitrary PrintableString 
Instance details

Defined in Test.QuickCheck.Modifiers

Arbitrary ExitCode 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary All 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen All #

shrink :: All -> [All] #

Arbitrary Any 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen Any #

shrink :: Any -> [Any] #

Arbitrary CChar 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CChar #

shrink :: CChar -> [CChar] #

Arbitrary CSChar 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CUChar 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CShort 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CUShort 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CInt 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CInt #

shrink :: CInt -> [CInt] #

Arbitrary CUInt 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CUInt #

shrink :: CUInt -> [CUInt] #

Arbitrary CLong 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CLong #

shrink :: CLong -> [CLong] #

Arbitrary CULong 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CLLong 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CULLong 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CFloat 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CDouble 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CPtrdiff 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CSize 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CSize #

shrink :: CSize -> [CSize] #

Arbitrary CWchar 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CSigAtomic 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CClock 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CTime 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen CTime #

shrink :: CTime -> [CTime] #

Arbitrary CUSeconds 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CSUSeconds 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CIntPtr 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CUIntPtr 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CIntMax 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary CUIntMax 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary IntSet 
Instance details

Defined in Test.QuickCheck.Arbitrary

Arbitrary a => Arbitrary [a] 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen [a] #

shrink :: [a] -> [[a]] #

Arbitrary a => Arbitrary (Maybe a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Maybe a) #

shrink :: Maybe a -> [Maybe a] #

Integral a => Arbitrary (Ratio a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Ratio a) #

shrink :: Ratio a -> [Ratio a] #

Arbitrary a => Arbitrary (Blind a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Blind a) #

shrink :: Blind a -> [Blind a] #

Arbitrary a => Arbitrary (Fixed a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Fixed a) #

shrink :: Fixed a -> [Fixed a] #

(Ord a, Arbitrary a) => Arbitrary (OrderedList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Arbitrary a => Arbitrary (NonEmptyList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Arbitrary a => Arbitrary (InfiniteList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

(Arbitrary a, Ord a) => Arbitrary (SortedList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

(Num a, Ord a, Arbitrary a) => Arbitrary (Positive a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Positive a) #

shrink :: Positive a -> [Positive a] #

(Num a, Eq a, Arbitrary a) => Arbitrary (NonZero a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (NonZero a) #

shrink :: NonZero a -> [NonZero a] #

(Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a) 
Instance details

Defined in Test.QuickCheck.Modifiers

(Integral a, Bounded a) => Arbitrary (Large a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Large a) #

shrink :: Large a -> [Large a] #

Integral a => Arbitrary (Small a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Small a) #

shrink :: Small a -> [Small a] #

Arbitrary a => Arbitrary (Shrink2 a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Shrink2 a) #

shrink :: Shrink2 a -> [Shrink2 a] #

Arbitrary a => Arbitrary (Smart a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Smart a) #

shrink :: Smart a -> [Smart a] #

(RealFloat a, Arbitrary a) => Arbitrary (Complex a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Complex a) #

shrink :: Complex a -> [Complex a] #

HasResolution a => Arbitrary (Fixed a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Fixed a) #

shrink :: Fixed a -> [Fixed a] #

Arbitrary a => Arbitrary (ZipList a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (ZipList a) #

shrink :: ZipList a -> [ZipList a] #

Arbitrary a => Arbitrary (Identity a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Identity a) #

shrink :: Identity a -> [Identity a] #

Arbitrary a => Arbitrary (First a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (First a) #

shrink :: First a -> [First a] #

Arbitrary a => Arbitrary (Last a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Last a) #

shrink :: Last a -> [Last a] #

Arbitrary a => Arbitrary (Dual a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Dual a) #

shrink :: Dual a -> [Dual a] #

(Arbitrary a, CoArbitrary a) => Arbitrary (Endo a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Endo a) #

shrink :: Endo a -> [Endo a] #

Arbitrary a => Arbitrary (Sum a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Sum a) #

shrink :: Sum a -> [Sum a] #

Arbitrary a => Arbitrary (Product a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Product a) #

shrink :: Product a -> [Product a] #

Arbitrary a => Arbitrary (IntMap a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (IntMap a) #

shrink :: IntMap a -> [IntMap a] #

Arbitrary a => Arbitrary (Seq a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Seq a) #

shrink :: Seq a -> [Seq a] #

(Ord a, Arbitrary a) => Arbitrary (Set a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Set a) #

shrink :: Set a -> [Set a] #

ArbitraryF f => Arbitrary (Term f) #

This lifts instances of ArbitraryF to instances of Arbitrary for the corresponding term type.

Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitrary :: Gen (Term f) #

shrink :: Term f -> [Term f] #

Arbitrary a => Arbitrary (InfiniteListInternalData a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (InfiniteListInternalData a) #

shrink :: InfiniteListInternalData a -> [InfiniteListInternalData a] #

(CoArbitrary a, Arbitrary b) => Arbitrary (a -> b) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a -> b) #

shrink :: (a -> b) -> [a -> b] #

(Arbitrary a, Arbitrary b) => Arbitrary (Either a b) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Either a b) #

shrink :: Either a b -> [Either a b] #

(Arbitrary a, Arbitrary b) => Arbitrary (a, b) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b) #

shrink :: (a, b) -> [(a, b)] #

(Function a, CoArbitrary a, Arbitrary b) => Arbitrary (a :-> b) 
Instance details

Defined in Test.QuickCheck.Function

Methods

arbitrary :: Gen (a :-> b) #

shrink :: (a :-> b) -> [a :-> b] #

(Function a, CoArbitrary a, Arbitrary b) => Arbitrary (Fun a b) 
Instance details

Defined in Test.QuickCheck.Function

Methods

arbitrary :: Gen (Fun a b) #

shrink :: Fun a b -> [Fun a b] #

(Arbitrary a, ShrinkState s a) => Arbitrary (Shrinking s a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

arbitrary :: Gen (Shrinking s a) #

shrink :: Shrinking s a -> [Shrinking s a] #

Arbitrary (m a) => Arbitrary (WrappedMonad m a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (WrappedMonad m a) #

shrink :: WrappedMonad m a -> [WrappedMonad m a] #

(Ord k, Arbitrary k, Arbitrary v) => Arbitrary (Map k v) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Map k v) #

shrink :: Map k v -> [Map k v] #

(ArbitraryF f, Arbitrary a) => Arbitrary (Context f a) #

This lifts instances of ArbitraryF to instances of Arbitrary for the corresponding context type.

Instance details

Defined in Data.Comp.Arbitrary

Methods

arbitrary :: Gen (Context f a) #

shrink :: Context f a -> [Context f a] #

(Arbitrary a, Arbitrary b, Arbitrary c) => Arbitrary (a, b, c) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c) #

shrink :: (a, b, c) -> [(a, b, c)] #

Arbitrary (a b c) => Arbitrary (WrappedArrow a b c) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (WrappedArrow a b c) #

shrink :: WrappedArrow a b c -> [WrappedArrow a b c] #

Arbitrary a => Arbitrary (Const a b) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Const a b) #

shrink :: Const a b -> [Const a b] #

Arbitrary (f a) => Arbitrary (Alt f a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Alt f a) #

shrink :: Alt f a -> [Alt f a] #

Arbitrary a => Arbitrary (Constant a b) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Constant a b) #

shrink :: Constant a b -> [Constant a b] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d) => Arbitrary (a, b, c, d) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d) #

shrink :: (a, b, c, d) -> [(a, b, c, d)] #

(Arbitrary1 f, Arbitrary1 g, Arbitrary a) => Arbitrary (Product f g a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Product f g a) #

shrink :: Product f g a -> [Product f g a] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e) => Arbitrary (a, b, c, d, e) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e) #

shrink :: (a, b, c, d, e) -> [(a, b, c, d, e)] #

(Arbitrary1 f, Arbitrary1 g, Arbitrary a) => Arbitrary (Compose f g a) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (Compose f g a) #

shrink :: Compose f g a -> [Compose f g a] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f) => Arbitrary (a, b, c, d, e, f) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e, f) #

shrink :: (a, b, c, d, e, f) -> [(a, b, c, d, e, f)] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g) => Arbitrary (a, b, c, d, e, f, g) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e, f, g) #

shrink :: (a, b, c, d, e, f, g) -> [(a, b, c, d, e, f, g)] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h) => Arbitrary (a, b, c, d, e, f, g, h) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e, f, g, h) #

shrink :: (a, b, c, d, e, f, g, h) -> [(a, b, c, d, e, f, g, h)] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i) => Arbitrary (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e, f, g, h, i) #

shrink :: (a, b, c, d, e, f, g, h, i) -> [(a, b, c, d, e, f, g, h, i)] #

(Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i, Arbitrary j) => Arbitrary (a, b, c, d, e, f, g, h, i, j) 
Instance details

Defined in Test.QuickCheck.Arbitrary

Methods

arbitrary :: Gen (a, b, c, d, e, f, g, h, i, j) #

shrink :: (a, b, c, d, e, f, g, h, i, j) -> [(a, b, c, d, e, f, g, h, i, j)] #

class NFData a where #

A class of types that can be fully evaluated.

Since: deepseq-1.1.0.0

Methods

rnf :: a -> () #

rnf should reduce its argument to normal form (that is, fully evaluate all sub-components), and then return '()'.

Generic NFData deriving

Starting with GHC 7.2, you can automatically derive instances for types possessing a Generic instance.

Note: Generic1 can be auto-derived starting with GHC 7.4

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic, Generic1)
import Control.DeepSeq

data Foo a = Foo a String
             deriving (Eq, Generic, Generic1)

instance NFData a => NFData (Foo a)
instance NFData1 Foo

data Colour = Red | Green | Blue
              deriving Generic

instance NFData Colour

Starting with GHC 7.10, the example above can be written more concisely by enabling the new DeriveAnyClass extension:

{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}

import GHC.Generics (Generic)
import Control.DeepSeq

data Foo a = Foo a String
             deriving (Eq, Generic, Generic1, NFData, NFData1)

data Colour = Red | Green | Blue
              deriving (Generic, NFData)

Compatibility with previous deepseq versions

Prior to version 1.4.0.0, the default implementation of the rnf method was defined as

rnf a = seq a ()

However, starting with deepseq-1.4.0.0, the default implementation is based on DefaultSignatures allowing for more accurate auto-derived NFData instances. If you need the previously used exact default rnf method implementation semantics, use

instance NFData Colour where rnf x = seq x ()

or alternatively

instance NFData Colour where rnf = rwhnf

or

{-# LANGUAGE BangPatterns #-}
instance NFData Colour where rnf !_ = ()
Instances
NFData Bool 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Bool -> () #

NFData Char 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Char -> () #

NFData Double 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Double -> () #

NFData Float 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Float -> () #

NFData Int 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int -> () #

NFData Int8 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int8 -> () #

NFData Int16 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int16 -> () #

NFData Int32 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int32 -> () #

NFData Int64 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int64 -> () #

NFData Integer 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Integer -> () #

NFData Natural

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Natural -> () #

NFData Ordering 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Ordering -> () #

NFData Word 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word -> () #

NFData Word8 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word8 -> () #

NFData Word16 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word16 -> () #

NFData Word32 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word32 -> () #

NFData Word64 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word64 -> () #

NFData CallStack

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CallStack -> () #

NFData () 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: () -> () #

NFData TyCon

NOTE: Only defined for base-4.8.0.0 and later

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: TyCon -> () #

NFData Version

Since: deepseq-1.3.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Version -> () #

NFData Void

Defined as rnf = absurd.

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Void -> () #

NFData Unique

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Unique -> () #

NFData ThreadId

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: ThreadId -> () #

NFData ExitCode

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: ExitCode -> () #

NFData TypeRep

NOTE: Only defined for base-4.8.0.0 and later

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: TypeRep -> () #

NFData All

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: All -> () #

NFData Any

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Any -> () #

NFData CChar

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CChar -> () #

NFData CSChar

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CSChar -> () #

NFData CUChar

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUChar -> () #

NFData CShort

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CShort -> () #

NFData CUShort

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUShort -> () #

NFData CInt

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CInt -> () #

NFData CUInt

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUInt -> () #

NFData CLong

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CLong -> () #

NFData CULong

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CULong -> () #

NFData CLLong

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CLLong -> () #

NFData CULLong

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CULLong -> () #

NFData CBool

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CBool -> () #

NFData CFloat

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CFloat -> () #

NFData CDouble

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CDouble -> () #

NFData CPtrdiff

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CPtrdiff -> () #

NFData CSize

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CSize -> () #

NFData CWchar

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CWchar -> () #

NFData CSigAtomic

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CSigAtomic -> () #

NFData CClock

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CClock -> () #

NFData CTime

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CTime -> () #

NFData CUSeconds

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUSeconds -> () #

NFData CSUSeconds

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CSUSeconds -> () #

NFData CFile

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CFile -> () #

NFData CFpos

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CFpos -> () #

NFData CJmpBuf

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CJmpBuf -> () #

NFData CIntPtr

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CIntPtr -> () #

NFData CUIntPtr

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUIntPtr -> () #

NFData CIntMax

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CIntMax -> () #

NFData CUIntMax

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: CUIntMax -> () #

NFData Fingerprint

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Fingerprint -> () #

NFData SrcLoc

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: SrcLoc -> () #

NFData IntSet 
Instance details

Defined in Data.IntSet.Internal

Methods

rnf :: IntSet -> () #

NFData Doc 
Instance details

Defined in Text.PrettyPrint.HughesPJ

Methods

rnf :: Doc -> () #

NFData TextDetails 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Methods

rnf :: TextDetails -> () #

NFData ZonedTime 
Instance details

Defined in Data.Time.LocalTime.Internal.ZonedTime

Methods

rnf :: ZonedTime -> () #

NFData LocalTime 
Instance details

Defined in Data.Time.LocalTime.Internal.LocalTime

Methods

rnf :: LocalTime -> () #

NFData a => NFData [a] 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: [a] -> () #

NFData a => NFData (Maybe a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Maybe a -> () #

NFData a => NFData (Ratio a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Ratio a -> () #

NFData (Ptr a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Ptr a -> () #

NFData (FunPtr a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: FunPtr a -> () #

NFData a => NFData (Complex a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Complex a -> () #

NFData (Fixed a)

Since: deepseq-1.3.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Fixed a -> () #

NFData a => NFData (Min a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Min a -> () #

NFData a => NFData (Max a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Max a -> () #

NFData a => NFData (First a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: First a -> () #

NFData a => NFData (Last a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Last a -> () #

NFData m => NFData (WrappedMonoid m)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: WrappedMonoid m -> () #

NFData a => NFData (Option a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Option a -> () #

NFData (StableName a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: StableName a -> () #

NFData a => NFData (ZipList a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: ZipList a -> () #

NFData a => NFData (Identity a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Identity a -> () #

NFData (IORef a)

NOTE: Only strict in the reference and not the referenced value.

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: IORef a -> () #

NFData a => NFData (First a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: First a -> () #

NFData a => NFData (Last a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Last a -> () #

NFData a => NFData (Dual a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Dual a -> () #

NFData a => NFData (Sum a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Sum a -> () #

NFData a => NFData (Product a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Product a -> () #

NFData a => NFData (Down a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Down a -> () #

NFData (MVar a)

NOTE: Only strict in the reference and not the referenced value.

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: MVar a -> () #

NFData a => NFData (NonEmpty a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: NonEmpty a -> () #

NFData a => NFData (IntMap a) 
Instance details

Defined in Data.IntMap.Internal

Methods

rnf :: IntMap a -> () #

NFData a => NFData (Tree a) 
Instance details

Defined in Data.Tree

Methods

rnf :: Tree a -> () #

NFData a => NFData (Seq a) 
Instance details

Defined in Data.Sequence.Internal

Methods

rnf :: Seq a -> () #

NFData a => NFData (FingerTree a) 
Instance details

Defined in Data.Sequence.Internal

Methods

rnf :: FingerTree a -> () #

NFData a => NFData (Digit a) 
Instance details

Defined in Data.Sequence.Internal

Methods

rnf :: Digit a -> () #

NFData a => NFData (Node a) 
Instance details

Defined in Data.Sequence.Internal

Methods

rnf :: Node a -> () #

NFData a => NFData (Elem a) 
Instance details

Defined in Data.Sequence.Internal

Methods

rnf :: Elem a -> () #

NFData a => NFData (Set a) 
Instance details

Defined in Data.Set.Internal

Methods

rnf :: Set a -> () #

NFData a => NFData (Doc a) 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Methods

rnf :: Doc a -> () #

NFData a => NFData (AnnotDetails a) 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Methods

rnf :: AnnotDetails a -> () #

NFData (a -> b)

This instance is for convenience and consistency with seq. This assumes that WHNF is equivalent to NF for functions.

Since: deepseq-1.3.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a -> b) -> () #

(NFData a, NFData b) => NFData (Either a b) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Either a b -> () #

(NFData a, NFData b) => NFData (a, b) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a, b) -> () #

(NFData a, NFData b) => NFData (Array a b) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Array a b -> () #

(NFData a, NFData b) => NFData (Arg a b)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Arg a b -> () #

NFData (Proxy a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Proxy a -> () #

NFData (STRef s a)

NOTE: Only strict in the reference and not the referenced value.

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: STRef s a -> () #

(NFData k, NFData a) => NFData (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

rnf :: Map k a -> () #

(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3) -> () #

NFData a => NFData (Const a b)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Const a b -> () #

NFData (a :~: b)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a :~: b) -> () #

(NFDataF f, NFData a) => NFData (Cxt h f a) # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnf :: Cxt h f a -> () #

(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4) -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Product f g a)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Product f g a -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Sum f g a)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Sum f g a -> () #

NFData (a :~~: b)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a :~~: b) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4, a5) -> () #

(NFData1 f, NFData1 g, NFData a) => NFData (Compose f g a)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Compose f g a -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4, a5, a6) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7, a8) -> () #

(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a1, a2, a3, a4, a5, a6, a7, a8, a9) -> () #

DeepSeq

class NFDataF f where Source #

Signature normal form. An instance NFDataF f gives rise to an instance NFData (Term f).

Minimal complete definition

rnfF

Methods

rnfF :: NFData a => f a -> () Source #

Instances
NFDataF [] Source # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnfF :: NFData a => [a] -> () Source #

NFDataF Maybe Source # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnfF :: NFData a => Maybe a -> () Source #

NFData a => NFDataF ((,) a) Source # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnfF :: NFData a0 => (a, a0) -> () Source #

(NFDataF f, NFData a) => NFDataF (f :&: a) Source # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnfF :: NFData a0 => (f :&: a) a0 -> () Source #

(NFDataF f, NFDataF g) => NFDataF (f :+: g) Source # 
Instance details

Defined in Data.Comp.DeepSeq

Methods

rnfF :: NFData a => (f :+: g) a -> () Source #

makeNFDataF :: Name -> Q [Dec] Source #

Derive an instance of NFDataF for a type constructor of any first-order kind taking at least one argument.

Smart Constructors

smartConstructors :: Name -> Q [Dec] Source #

Derive smart constructors for a type constructor of any first-order kind taking at least one argument. The smart constructors are similar to the ordinary constructors, but an inject is automatically inserted.

Smart Constructors w/ Annotations

smartAConstructors :: Name -> Q [Dec] Source #

Derive smart constructors with products for a type constructor of any parametric kind taking at least one argument. The smart constructors are similar to the ordinary constructors, but an injectA is automatically inserted.

Lifting to Sums

liftSum :: Name -> Q [Dec] Source #

Given the name of a type class, where the first parameter is a functor, lift it to sums of functors. Example: class ShowF f where ... is lifted as instance (ShowF f, ShowF g) => ShowF (f :+: g) where ... .