| Portability | non-portable (GHC Extensions) | 
|---|---|
| Stability | experimental | 
| Maintainer | Tom Hvitved <hvitved@diku.dk> | 
Data.Comp.MultiParam.Algebra
Contents
Description
This module defines the notion of algebras and catamorphisms, and their generalizations to e.g. monadic versions and other (co)recursion schemes.
- type Alg f a = f a a :-> a
 - free :: forall h f a b. HDifunctor f => Alg f a -> (b :-> a) -> Cxt h f a b :-> a
 - cata :: forall f a. HDifunctor f => Alg f a -> Term f :-> a
 - cata' :: HDifunctor f => Alg f a -> Cxt h f a a :-> a
 - appCxt :: HDifunctor f => Cxt Hole f a (Cxt h f a b) :-> Cxt h f a b
 - type AlgM m f a = NatM m (f a a) a
 - freeM :: forall m h f a b. (HDitraversable f m a, Monad m) => AlgM m f a -> NatM m b a -> NatM m (Cxt h f a b) a
 - cataM :: forall m f a. (HDitraversable f m a, Monad m) => AlgM m f a -> NatM m (Term f) a
 - type AlgM' m f a = NatM m (f a (Compose m a)) a
 - newtype  Compose f g a = Compose {
- getCompose :: f (g a)
 
 - freeM' :: forall m h f a b. (HDifunctor f, Monad m) => AlgM' m f a -> NatM m b a -> NatM m (Cxt h f a b) a
 - cataM' :: forall m f a. (HDifunctor f, Monad m) => AlgM' m f a -> NatM m (Term f) a
 - type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g)
 - type SigFun f g = forall a b. f a b :-> g a b
 - type Hom f g = SigFun f (Context g)
 - appHom :: forall f g. (HDifunctor f, HDifunctor g) => Hom f g -> CxtFun f g
 - appHom' :: forall f g. HDifunctor g => Hom f g -> CxtFun f g
 - compHom :: (HDifunctor g, HDifunctor h) => Hom g h -> Hom f g -> Hom f h
 - appSigFun :: forall f g. HDifunctor f => SigFun f g -> CxtFun f g
 - appSigFun' :: forall f g. HDifunctor g => SigFun f g -> CxtFun f g
 - compSigFun :: SigFun g h -> SigFun f g -> SigFun f h
 - hom :: HDifunctor g => SigFun f g -> Hom f g
 - compAlg :: (HDifunctor f, HDifunctor g) => Alg g a -> Hom f g -> Alg f a
 - type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g)
 - type SigFunM m f g = forall a b. NatM m (f a b) (g a b)
 - type HomM m f g = SigFunM m f (Cxt Hole g)
 - sigFunM :: Monad m => SigFun f g -> SigFunM m f g
 - hom' :: (HDifunctor f, HDifunctor g, Monad m) => SigFunM m f g -> HomM m f g
 - appHomM :: forall f g m. (HDitraversable f m Any, HDifunctor g, Monad m) => HomM m f g -> CxtFunM m f g
 - appHomM' :: forall f g m. (HDitraversable g m Any, Monad m) => HomM m f g -> CxtFunM m f g
 - homM :: (HDifunctor g, Monad m) => SigFun f g -> HomM m f g
 - appSigFunM :: forall m f g. (HDitraversable f m Any, Monad m) => SigFunM m f g -> CxtFunM m f g
 - appSigFunM' :: forall m f g. (HDitraversable g m Any, Monad m) => SigFunM m f g -> CxtFunM m f g
 - compHomM :: (HDitraversable g m Any, HDifunctor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h
 - compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h
 - compAlgM :: (HDitraversable g m a, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a
 - compAlgM' :: (HDitraversable g m a, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a
 
Algebras & Catamorphisms
free :: forall h f a b. HDifunctor f => Alg f a -> (b :-> a) -> Cxt h f a b :-> aSource
Construct a catamorphism for contexts over f with holes of type b, from
  the given algebra. 
cata :: forall f a. HDifunctor f => Alg f a -> Term f :-> aSource
Construct a catamorphism from the given algebra.
cata' :: HDifunctor f => Alg f a -> Cxt h f a a :-> aSource
A generalisation of cata from terms over f to contexts over f, where
  the holes have the type of the algebra carrier. 
appCxt :: HDifunctor f => Cxt Hole f a (Cxt h f a b) :-> Cxt h f a bSource
This function applies a whole context into another context.
Monadic Algebras & Catamorphisms
type AlgM m f a = NatM m (f a a) aSource
This type represents a monadic algebra. It is similar to Alg but
  the return type is monadic. 
freeM :: forall m h f a b. (HDitraversable f m a, Monad m) => AlgM m f a -> NatM m b a -> NatM m (Cxt h f a b) aSource
Construct a monadic catamorphism for contexts over f with holes of type
  b, from the given monadic algebra. 
cataM :: forall m f a. (HDitraversable f m a, Monad m) => AlgM m f a -> NatM m (Term f) aSource
Construct a monadic catamorphism from the given monadic algebra.
type AlgM' m f a = NatM m (f a (Compose m a)) aSource
This type represents a monadic algebra, but where the covariant argument is also a monadic computation.
newtype Compose f g a
Right-to-left composition of functors. The composition of applicative functors is always applicative, but the composition of monads is not always a monad.
Constructors
| Compose | |
Fields 
  | |
Instances
| (Functor f, Functor g) => Functor (Compose f g) | |
| (Applicative f, Applicative g) => Applicative (Compose f g) | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | |
| (Traversable f, Traversable g) => Traversable (Compose f g) | |
| (Alternative f, Applicative g) => Alternative (Compose f g) | 
freeM' :: forall m h f a b. (HDifunctor f, Monad m) => AlgM' m f a -> NatM m b a -> NatM m (Cxt h f a b) aSource
Construct a monadic catamorphism for contexts over f with holes of type
  b, from the given monadic algebra. 
cataM' :: forall m f a. (HDifunctor f, Monad m) => AlgM' m f a -> NatM m (Term f) aSource
Construct a monadic catamorphism from the given monadic algebra.
Term Homomorphisms
type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g)Source
This type represents a context function.
appHom :: forall f g. (HDifunctor f, HDifunctor g) => Hom f g -> CxtFun f gSource
Apply a term homomorphism recursively to a term/context.
appHom' :: forall f g. HDifunctor g => Hom f g -> CxtFun f gSource
Apply a term homomorphism recursively to a term/context. This is
 a top-down variant of appHom.
compHom :: (HDifunctor g, HDifunctor h) => Hom g h -> Hom f g -> Hom f hSource
Compose two term homomorphisms.
appSigFun :: forall f g. HDifunctor f => SigFun f g -> CxtFun f gSource
This function applies a signature function to the given context.
appSigFun' :: forall f g. HDifunctor g => SigFun f g -> CxtFun f gSource
This function applies a signature function to the given context.
compSigFun :: SigFun g h -> SigFun f g -> SigFun f hSource
This function composes two signature functions.
hom :: HDifunctor g => SigFun f g -> Hom f gSource
Lifts the given signature function to the canonical term homomorphism.
compAlg :: (HDifunctor f, HDifunctor g) => Alg g a -> Hom f g -> Alg f aSource
Compose an algebra with a term homomorphism to get a new algebra.
Monadic Term Homomorphisms
type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g)Source
This type represents a monadic context function.
type SigFunM m f g = forall a b. NatM m (f a b) (g a b)Source
This type represents a monadic signature function.
sigFunM :: Monad m => SigFun f g -> SigFunM m f gSource
Lift the given signature function to a monadic signature function. Note that term homomorphisms are instances of signature functions. Hence this function also applies to term homomorphisms.
hom' :: (HDifunctor f, HDifunctor g, Monad m) => SigFunM m f g -> HomM m f gSource
Lift the give monadic signature function to a monadic term homomorphism.
appHomM :: forall f g m. (HDitraversable f m Any, HDifunctor g, Monad m) => HomM m f g -> CxtFunM m f gSource
Apply a monadic term homomorphism recursively to a term/context.
appHomM' :: forall f g m. (HDitraversable g m Any, Monad m) => HomM m f g -> CxtFunM m f gSource
Apply a monadic term homomorphism recursively to a
 term/context. This is a top-down variant of appHomM.
homM :: (HDifunctor g, Monad m) => SigFun f g -> HomM m f gSource
Lift the given signature function to a monadic term homomorphism.
appSigFunM :: forall m f g. (HDitraversable f m Any, Monad m) => SigFunM m f g -> CxtFunM m f gSource
This function applies a monadic signature function to the given context.
appSigFunM' :: forall m f g. (HDitraversable g m Any, Monad m) => SigFunM m f g -> CxtFunM m f gSource
This function applies a monadic signature function to the given
 context. This is a top-down variant of appSigFunM.
compHomM :: (HDitraversable g m Any, HDifunctor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f hSource
Compose two monadic term homomorphisms.
compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f hSource
This function composes two monadic signature functions.