compdata-0.9: Compositional Data Types

Copyright(c) 2011 Patrick Bahr
LicenseBSD3
MaintainerPatrick Bahr <paba@diku.dk>
Stabilityexperimental
Portabilitynon-portable (GHC Extensions)
Safe HaskellSafe-Inferred
LanguageHaskell98

Data.Comp.Multi.Ops

Description

This module provides operators on higher-order functors. All definitions are generalised versions of those in Data.Comp.Ops.

Synopsis

Documentation

data (f :+: g) h e infixr 6 Source

Data type defining coproducts.

Constructors

Inl (f h e) 
Inr (g h e) 

Instances

(HFunctor f, HFunctor g) => HFunctor ((:+:) * f g) 
(HFoldable f, HFoldable g) => HFoldable ((:+:) * f g) 
(HTraversable f, HTraversable g) => HTraversable ((:+:) * f g) 
(ShowHF f, ShowHF g) => ShowHF ((:+:) * f g) 
(EqHF f, EqHF g) => EqHF ((:+:) * f g)

EqF is propagated through sums.

(OrdHF f, OrdHF g) => OrdHF ((:+:) * f g)

OrdHF is propagated through sums.

(Desugar f h, Desugar g h) => Desugar ((:+:) * f g) h 
(HasVars f v0, HasVars g v0) => HasVars ((:+:) * f g) v 
DistAnn s p s' => DistAnn ((:+:) * f s) p ((:+:) * ((:&:) * f p) s') 
RemA s s' => RemA ((:+:) * ((:&:) * f p) s) ((:+:) * f s') 

caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c Source

Utility function to case on a higher-order functor sum, without exposing the internal representation of sums.

type family Elem f g :: Emb Source

Equations

Elem f f = Found Here 
Elem (f1 :+: f2) g = Sum' (Elem f1 g) (Elem f2 g) 
Elem f (g1 :+: g2) = Choose (Elem f g1) (Elem f g2) 
Elem f g = NotFound 

type family Choose e1 r :: Emb Source

Equations

Choose (Found x) (Found y) = Ambiguous 
Choose Ambiguous y = Ambiguous 
Choose x Ambiguous = Ambiguous 
Choose (Found x) y = Found (Le x) 
Choose x (Found y) = Found (Ri y) 
Choose x y = NotFound 

type family Sum' e1 r :: Emb Source

Equations

Sum' (Found x) (Found y) = Found (Sum x y) 
Sum' Ambiguous y = Ambiguous 
Sum' x Ambiguous = Ambiguous 
Sum' NotFound y = NotFound 
Sum' x NotFound = NotFound 

data Proxy a Source

Constructors

P 

class Subsume e f g where Source

Methods

inj' :: Proxy e -> f a :-> g a Source

prj' :: Proxy e -> NatM Maybe (g a) (f a) Source

type (:<:) f g = Subsume (ComprEmb (Elem f g)) f g infixl 5 Source

A constraint f :<: g expresses that the signature f is subsumed by g, i.e. f can be used to construct elements in g.

inj :: forall f g a. f :<: g => f a :-> g a Source

proj :: forall f g a. f :<: g => NatM Maybe (g a) (f a) Source

type (:=:) f g = (f :<: g, g :<: f) infixl 5 Source

spl :: f :=: (f1 :+: f2) => (f1 a :-> b) -> (f2 a :-> b) -> f a :-> b Source

data (f :*: g) a infixr 8 Source

Constructors

(f a) :*: (g a) infixr 8 

fst :: (f :*: g) a -> f a Source

snd :: (f :*: g) a -> g a Source

data (f :&: a) g e infixr 7 Source

This data type adds a constant product to a signature. Alternatively, this could have also been defined as

data (f :&: a) (g ::  * -> *) e = f g e :&: a e

This is too general, however, for example for productHHom.

Constructors

(f g e) :&: a infixr 7 

Instances

DistAnn f p ((:&:) * f p) 
HFunctor f => HFunctor ((:&:) * f a) 
HFoldable f => HFoldable ((:&:) * f a) 
HTraversable f => HTraversable ((:&:) * f a) 
(ShowHF f, Show p) => ShowHF ((:&:) * f p) 
RemA ((:&:) * f p) f 
DistAnn s p s' => DistAnn ((:+:) * f s) p ((:+:) * ((:&:) * f p) s') 
RemA s s' => RemA ((:+:) * ((:&:) * f p) s) ((:+:) * f s') 

class DistAnn s p s' | s' -> s, s' -> p where Source

This class defines how to distribute an annotation over a sum of signatures.

Methods

injectA :: p -> s a :-> s' a Source

This function injects an annotation over a signature.

projectA :: s' a :-> (s a :&: p) Source

Instances

DistAnn f p ((:&:) * f p) 
DistAnn s p s' => DistAnn ((:+:) * f s) p ((:+:) * ((:&:) * f p) s') 

class RemA s s' | s -> s' where Source

Methods

remA :: s a :-> s' a Source

Instances

RemA ((:&:) * f p) f 
RemA s s' => RemA ((:+:) * ((:&:) * f p) s) ((:+:) * f s')