module Data.Function.Contravariant.Syntax where (-.) :: (a -> b) -> (b -> c) -> a -> c -. :: forall a b c. (a -> b) -> (b -> c) -> a -> c (-.) = forall a b c. (a -> b -> c) -> b -> a -> c flip forall b c a. (b -> c) -> (a -> b) -> a -> c (.) infixr 8 -. (-.:) :: (b -> c) -> (a -> c -> d) -> a -> b -> d -.: :: forall b c a d. (b -> c) -> (a -> c -> d) -> a -> b -> d (-.:) b -> c p a -> c -> d q a a b b = a -> c -> d q a a forall a b. (a -> b) -> a -> b $ b -> c p b b infixr 8 -.: -.* :: (b -> c) -> (a -> c -> d) -> a -> b -> d (-.*) = forall b c a d. (b -> c) -> (a -> c -> d) -> a -> b -> d (-.:) infixr 8 -.* (-.:.) :: (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e -.:. :: forall c d a b e. (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e (-.:.) c -> d p a -> b -> d -> e q a a b b c c = a -> b -> d -> e q a a b b forall a b. (a -> b) -> a -> b $ c -> d p c c infixr 8 -.:. -.** :: (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e (-.**) = forall c d a b e. (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e (-.:.) infixr 8 -.** (-.::) :: (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f -.:: :: forall d e a b c f. (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f (-.::) d -> e p a -> b -> c -> e -> f q a a b b c c d d = a -> b -> c -> e -> f q a a b b c c forall a b. (a -> b) -> a -> b $ d -> e p d d infixr 8 -.:: -.*** :: (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f (-.***) = forall d e a b c f. (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f (-.::) infixr 8 -.*** (-.::.) :: (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g -.::. :: forall e f a b c d g. (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g (-.::.) e -> f p a -> b -> c -> d -> f -> g q a a b b c c d d e e = a -> b -> c -> d -> f -> g q a a b b c c d d forall a b. (a -> b) -> a -> b $ e -> f p e e infixr 8 -.::. -.**** :: (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g (-.****) = forall e f a b c d g. (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g (-.::.) infixr 8 -.**** (-.:::) :: (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h -.::: :: forall f g a b c d e h. (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h (-.:::) f -> g p a -> b -> c -> d -> e -> g -> h q a a b b c c d d e e f f = a -> b -> c -> d -> e -> g -> h q a a b b c c d d e e forall a b. (a -> b) -> a -> b $ f -> g p f f infixr 8 -.::: -.***** :: (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h (-.*****) = forall f g a b c d e h. (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h (-.:::) infixr 8 -.***** (-.:::.) :: (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i -.:::. :: forall g h a b c d e f i. (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i (-.:::.) g -> h p a -> b -> c -> d -> e -> f -> h -> i q a a b b c c d d e e f f g g = a -> b -> c -> d -> e -> f -> h -> i q a a b b c c d d e e f f forall a b. (a -> b) -> a -> b $ g -> h p g g infixr 8 -.:::. -.****** :: (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i (-.******) = forall g h a b c d e f i. (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i (-.:::.) infixr 8 -.****** (-.::::) :: (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j -.:::: :: forall h i a b c d e f g j. (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j (-.::::) h -> i p a -> b -> c -> d -> e -> f -> g -> i -> j q a a b b c c d d e e f f g g h h = a -> b -> c -> d -> e -> f -> g -> i -> j q a a b b c c d d e e f f g g forall a b. (a -> b) -> a -> b $ h -> i p h h infixr 8 -.:::: -.******* :: (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j (-.*******) = forall h i a b c d e f g j. (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j (-.::::) infixr 8 -.******* (-.::::.) :: (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k -.::::. :: forall i j a b c d e f g h k. (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k (-.::::.) i -> j p a -> b -> c -> d -> e -> f -> g -> h -> j -> k q a a b b c c d d e e f f g g h h i i = a -> b -> c -> d -> e -> f -> g -> h -> j -> k q a a b b c c d d e e f f g g h h forall a b. (a -> b) -> a -> b $ i -> j p i i infixr 8 -.::::. -.******** :: (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k (-.********) = forall i j a b c d e f g h k. (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k (-.::::.) infixr 8 -.********