| LeftModule Integer r => LeftModule Integer (Scalar r) Source # | |
|
| Semiring r => LeftModule r (Scalar r) Source # | |
|
| LeftModule Natural r => LeftModule Natural (Scalar r) Source # | |
|
| RightModule Integer r => RightModule Integer (Scalar r) Source # | |
|
| Semiring r => RightModule r (Scalar r) Source # | |
|
| RightModule Natural r => RightModule Natural (Scalar r) Source # | |
|
| Enum r => Enum (Scalar r) Source # | |
|
| Eq r => Eq (Scalar r) Source # | |
|
| Fractional r => Fractional (Scalar r) Source # | |
|
| Integral r => Integral (Scalar r) Source # | |
|
| Num r => Num (Scalar r) Source # | |
|
| Ord r => Ord (Scalar r) Source # | |
|
| Read r => Read (Scalar r) Source # | |
|
| Real r => Real (Scalar r) Source # | |
|
| Show r => Show (Scalar r) Source # | |
|
| Commutative r => Commutative (Scalar r) Source # | |
|
| UnitNormalForm r => UnitNormalForm (Scalar r) Source # | |
|
| Ring r => Ring (Scalar r) Source # | |
|
| Rig r => Rig (Scalar r) Source # | |
|
| DecidableUnits r => DecidableUnits (Scalar r) Source # | |
|
| DecidableAssociates r => DecidableAssociates (Scalar r) Source # | |
|
| Division r => Division (Scalar r) Source # | |
|
| Unital r => Unital (Scalar r) Source # | |
|
| Group r => Group (Scalar r) Source # | |
|
| Multiplicative r => Multiplicative (Scalar r) Source # | |
|
| Semiring r => Semiring (Scalar r) Source # | |
|
| Monoidal r => Monoidal (Scalar r) Source # | |
|
| Additive r => Additive (Scalar r) Source # | |
|
| Abelian r => Abelian (Scalar r) Source # | |
|
| Normed r => Normed (Scalar r) Source # | |
|
| LeftModule (Scalar (Fraction Integer)) Algebraic # | |
|
| RightModule (Scalar (Fraction Integer)) Algebraic # | |
|
| Semiring r => LeftModule (Scalar r) (Scalar r) Source # | |
|
| (DecidableZero r, Semiring r) => LeftModule (Scalar r) (Unipol r) # | |
|
| (DecidableZero r, Semiring r, Multiplicative r) => LeftModule (Scalar r) (Matrix r) # | |
|
| Semiring r => RightModule (Scalar r) (Scalar r) Source # | |
|
| (DecidableZero r, Semiring r) => RightModule (Scalar r) (Unipol r) # | |
|
| (DecidableZero r, Semiring r, Multiplicative r) => RightModule (Scalar r) (Matrix r) # | |
|
| (Wraps vars poly, LeftModule (Scalar r) poly) => LeftModule (Scalar r) (LabPolynomial poly vars) # | |
|
| (Wraps vars poly, RightModule (Scalar r) poly) => RightModule (Scalar r) (LabPolynomial poly vars) # | |
|
| (KnownNat n, IsMonomialOrder n ord, IsPolynomial poly, LeftModule (Scalar r) poly) => LeftModule (Scalar r) (PadPolyL n ord poly) # | |
|
| ((~) * r (Coefficient poly), Field (Coefficient poly), IsOrderedPolynomial poly) => LeftModule (Scalar r) (Quotient k poly ideal) # | |
|
| (KnownNat n, IsMonomialOrder n ord, IsPolynomial poly, RightModule (Scalar r) poly) => RightModule (Scalar r) (PadPolyL n ord poly) # | |
|
| ((~) * r (Coefficient poly), IsOrderedPolynomial poly) => RightModule (Scalar r) (Quotient k poly ideal) # | |
|
| (IsMonomialOrder n order, CoeffRing r, KnownNat n) => LeftModule (Scalar r) (OrderedPolynomial * r order n) # | |
|
| (IsMonomialOrder n order, CoeffRing r, KnownNat n) => RightModule (Scalar r) (OrderedPolynomial * r order n) # | |
|
| type Norm (Scalar r) Source # | |
|