| Copyright | (c) 2018 Justus Sagemüller |
|---|---|
| License | GPL v3 (see COPYING) |
| Maintainer | (@) sagemueller $ geo.uni-koeln.de |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
Control.Category.Discrete
Description
Documentation
data Discrete a b where Source #
The discrete category is the category with the minimum possible amount
of arrows: for any given type, there is id, and that's all.
You can use this to provide a proof that some endomorphism (of not closer
specified category) is the identity.
Instances
| Category k (Discrete k) Source # | |
| Functor [] (Discrete *) (Discrete *) Source # | |
| Functor Maybe (Discrete *) (Discrete *) Source # | |
| Functor IO (Discrete *) (Discrete *) Source # | |
| Functor Complex (Discrete *) (Discrete *) Source # | |
| HasAgent (Discrete *) Source # | |
| Category (Discrete *) Source # | |
| EnhancedCat (Coercion *) (Discrete *) Source # | |
| Functor (Either a) (Discrete *) (Discrete *) Source # | |
| Functor ((,) a) (Discrete *) (Discrete *) Source # | |
| EnhancedCat (Discrete *) f => EnhancedCat (Discrete *) (ConstrainedCategory f o) Source # | |
| EnhancedCat ((->) LiftedRep LiftedRep) (Discrete *) Source # | |
| Category f => EnhancedCat (ConstrainedCategory f o) (Discrete *) Source # | |
| Functor ((->) LiftedRep LiftedRep a) (Discrete *) (Discrete *) Source # | |
| type Object (Discrete *) o Source # | |
| type AgentVal (Discrete *) a v Source # | |