{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE MagicHash, DeriveDataTypeable, StandaloneDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
#endif
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE TypeFamilies #-}
#endif

{-# OPTIONS_HADDOCK not-home #-}
{-# OPTIONS_GHC -fno-warn-incomplete-uni-patterns #-}

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.IntMap.Internal
-- Copyright   :  (c) Daan Leijen 2002
--                (c) Andriy Palamarchuk 2008
--                (c) wren romano 2016
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Portability :  portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- This defines the data structures and core (hidden) manipulations
-- on representations.
--
-- @since 0.5.9
-----------------------------------------------------------------------------

-- [Note: INLINE bit fiddling]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- It is essential that the bit fiddling functions like mask, zero, branchMask
-- etc are inlined. If they do not, the memory allocation skyrockets. The GHC
-- usually gets it right, but it is disastrous if it does not. Therefore we
-- explicitly mark these functions INLINE.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Care must be taken when using 'go' function which captures an argument.
-- Sometimes (for example when the argument is passed to a data constructor,
-- as in insert), GHC heap-allocates more than necessary. Therefore C-- code
-- must be checked for increased allocation when creating and modifying such
-- functions.


-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of IntMap matters when considering performance.
-- Currently in GHC 7.0, when type has 3 constructors, they are matched from
-- the first to the last -- the best performance is achieved when the
-- constructors are ordered by frequency.
-- On GHC 7.0, reordering constructors from Nil | Tip | Bin to Bin | Tip | Nil
-- improves the benchmark by circa 10%.

module Data.IntMap.Internal (
    -- * Map type
      IntMap(..), Key          -- instance Eq,Show

    -- * Operators
    , (!), (!?), (\\)

    -- * Query
    , null
    , size
    , member
    , notMember
    , lookup
    , findWithDefault
    , lookupLT
    , lookupGT
    , lookupLE
    , lookupGE
    , disjoint

    -- * Construction
    , empty
    , singleton

    -- ** Insertion
    , insert
    , insertWith
    , insertWithKey
    , insertLookupWithKey

    -- ** Delete\/Update
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , updateLookupWithKey
    , alter
    , alterF

    -- * Combine

    -- ** Union
    , union
    , unionWith
    , unionWithKey
    , unions
    , unionsWith

    -- ** Difference
    , difference
    , differenceWith
    , differenceWithKey

    -- ** Intersection
    , intersection
    , intersectionWith
    , intersectionWithKey

    -- ** Compose
    , compose

    -- ** General combining function
    , SimpleWhenMissing
    , SimpleWhenMatched
    , runWhenMatched
    , runWhenMissing
    , merge
    -- *** @WhenMatched@ tactics
    , zipWithMaybeMatched
    , zipWithMatched
    -- *** @WhenMissing@ tactics
    , mapMaybeMissing
    , dropMissing
    , preserveMissing
    , mapMissing
    , filterMissing

    -- ** Applicative general combining function
    , WhenMissing (..)
    , WhenMatched (..)
    , mergeA
    -- *** @WhenMatched@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , zipWithMaybeAMatched
    , zipWithAMatched
    -- *** @WhenMissing@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , traverseMaybeMissing
    , traverseMissing
    , filterAMissing

    -- ** Deprecated general combining function
    , mergeWithKey
    , mergeWithKey'

    -- * Traversal
    -- ** Map
    , map
    , mapWithKey
    , traverseWithKey
    , traverseMaybeWithKey
    , mapAccum
    , mapAccumWithKey
    , mapAccumRWithKey
    , mapKeys
    , mapKeysWith
    , mapKeysMonotonic

    -- * Folds
    , foldr
    , foldl
    , foldrWithKey
    , foldlWithKey
    , foldMapWithKey

    -- ** Strict folds
    , foldr'
    , foldl'
    , foldrWithKey'
    , foldlWithKey'

    -- * Conversion
    , elems
    , keys
    , assocs
    , keysSet
    , fromSet

    -- ** Lists
    , toList
    , fromList
    , fromListWith
    , fromListWithKey

    -- ** Ordered lists
    , toAscList
    , toDescList
    , fromAscList
    , fromAscListWith
    , fromAscListWithKey
    , fromDistinctAscList

    -- * Filter
    , filter
    , filterWithKey
    , restrictKeys
    , withoutKeys
    , partition
    , partitionWithKey

    , mapMaybe
    , mapMaybeWithKey
    , mapEither
    , mapEitherWithKey

    , split
    , splitLookup
    , splitRoot

    -- * Submap
    , isSubmapOf, isSubmapOfBy
    , isProperSubmapOf, isProperSubmapOfBy

    -- * Min\/Max
    , lookupMin
    , lookupMax
    , findMin
    , findMax
    , deleteMin
    , deleteMax
    , deleteFindMin
    , deleteFindMax
    , updateMin
    , updateMax
    , updateMinWithKey
    , updateMaxWithKey
    , minView
    , maxView
    , minViewWithKey
    , maxViewWithKey

    -- * Debugging
    , showTree
    , showTreeWith

    -- * Internal types
    , Mask, Prefix, Nat

    -- * Utility
    , natFromInt
    , intFromNat
    , link
    , linkWithMask
    , bin
    , binCheckLeft
    , binCheckRight
    , zero
    , nomatch
    , match
    , mask
    , maskW
    , shorter
    , branchMask
    , highestBitMask

    -- * Used by "IntMap.Merge.Lazy" and "IntMap.Merge.Strict"
    , mapWhenMissing
    , mapWhenMatched
    , lmapWhenMissing
    , contramapFirstWhenMatched
    , contramapSecondWhenMatched
    , mapGentlyWhenMissing
    , mapGentlyWhenMatched
    ) where

#if MIN_VERSION_base(4,8,0)
import Data.Functor.Identity (Identity (..))
import Control.Applicative (liftA2)
#else
import Control.Applicative (Applicative(pure, (<*>)), (<$>), liftA2)
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))
import Data.Word (Word)
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup(stimes))
#endif
#if !(MIN_VERSION_base(4,11,0)) && MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup((<>)))
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Functor.Classes
#endif

import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.Foldable as Foldable
#if !MIN_VERSION_base(4,8,0)
import Data.Foldable (Foldable())
#endif
import Data.Maybe (fromMaybe)
import Data.Typeable
import Prelude hiding (lookup, map, filter, foldr, foldl, null)

import Data.IntSet.Internal (Key)
import qualified Data.IntSet.Internal as IntSet
import Utils.Containers.Internal.BitUtil
import Utils.Containers.Internal.StrictPair

#if __GLASGOW_HASKELL__
import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix),
                  DataType, mkDataType)
import GHC.Exts (build)
#if !MIN_VERSION_base(4,8,0)
import Data.Functor ((<$))
#endif
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as GHCExts
#endif
import Text.Read
#endif
import qualified Control.Category as Category
#if __GLASGOW_HASKELL__ >= 709
import Data.Coerce
#endif


-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word

natFromInt :: Key -> Nat
natFromInt :: Key -> Nat
natFromInt = Key -> Nat
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE natFromInt #-}

intFromNat :: Nat -> Key
intFromNat :: Nat -> Key
intFromNat = Nat -> Key
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE intFromNat #-}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}


-- | A map of integers to values @a@.

-- See Note: Order of constructors
data IntMap a = Bin {-# UNPACK #-} !Prefix
                    {-# UNPACK #-} !Mask
                    !(IntMap a)
                    !(IntMap a)
-- Fields:
--   prefix: The most significant bits shared by all keys in this Bin.
--   mask: The switching bit to determine if a key should follow the left
--         or right subtree of a 'Bin'.
-- Invariant: Nil is never found as a child of Bin.
-- Invariant: The Mask is a power of 2. It is the largest bit position at which
--            two keys of the map differ.
-- Invariant: Prefix is the common high-order bits that all elements share to
--            the left of the Mask bit.
-- Invariant: In (Bin prefix mask left right), left consists of the elements that
--            don't have the mask bit set; right is all the elements that do.
              | Tip {-# UNPACK #-} !Key a
              | Nil

type Prefix = Int
type Mask   = Int


-- Some stuff from "Data.IntSet.Internal", for 'restrictKeys' and
-- 'withoutKeys' to use.
type IntSetPrefix = Int
type IntSetBitMap = Word

bitmapOf :: Int -> IntSetBitMap
bitmapOf :: Key -> Nat
bitmapOf Key
x = Nat -> Key -> Nat
shiftLL Nat
1 (Key
x Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.suffixBitMask)
{-# INLINE bitmapOf #-}

{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}

-- | /O(min(n,W))/. Find the value at a key.
-- Calls 'error' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
-- > fromList [(5,'a'), (3,'b')] ! 5 == 'a'

(!) :: IntMap a -> Key -> a
(!) IntMap a
m Key
k = Key -> IntMap a -> a
forall a. Key -> IntMap a -> a
find Key
k IntMap a
m

-- | /O(min(n,W))/. Find the value at a key.
-- Returns 'Nothing' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] !? 1 == Nothing
-- > fromList [(5,'a'), (3,'b')] !? 5 == Just 'a'
--
-- @since 0.5.11

(!?) :: IntMap a -> Key -> Maybe a
!? :: IntMap a -> Key -> Maybe a
(!?) IntMap a
m Key
k = Key -> IntMap a -> Maybe a
forall a. Key -> IntMap a -> Maybe a
lookup Key
k IntMap a
m

-- | Same as 'difference'.
(\\) :: IntMap a -> IntMap b -> IntMap a
IntMap a
m1 \\ :: IntMap a -> IntMap b -> IntMap a
\\ IntMap b
m2 = IntMap a -> IntMap b -> IntMap a
forall a b. IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2

infixl 9 !?,\\{-This comment teaches CPP correct behaviour -}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}

instance Monoid (IntMap a) where
    mempty :: IntMap a
mempty  = IntMap a
forall a. IntMap a
empty
    mconcat :: [IntMap a] -> IntMap a
mconcat = [IntMap a] -> IntMap a
forall (f :: * -> *) a. Foldable f => f (IntMap a) -> IntMap a
unions
#if !(MIN_VERSION_base(4,9,0))
    mappend = union
#else
    mappend :: IntMap a -> IntMap a -> IntMap a
mappend = IntMap a -> IntMap a -> IntMap a
forall a. Semigroup a => a -> a -> a
(<>)

-- | @since 0.5.7
instance Semigroup (IntMap a) where
    <> :: IntMap a -> IntMap a -> IntMap a
(<>)    = IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union
    stimes :: b -> IntMap a -> IntMap a
stimes  = b -> IntMap a -> IntMap a
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
#endif

-- | Folds in order of increasing key.
instance Foldable.Foldable IntMap where
  fold :: IntMap m -> m
fold = IntMap m -> m
forall m. Monoid m => IntMap m -> m
go
    where go :: IntMap a -> a
go IntMap a
Nil = a
forall a. Monoid a => a
mempty
          go (Tip Key
_ a
v) = a
v
          go (Bin Key
_ Key
m IntMap a
l IntMap a
r)
            | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = IntMap a -> a
go IntMap a
r a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> a
go IntMap a
l
            | Bool
otherwise = IntMap a -> a
go IntMap a
l a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> a
go IntMap a
r
  {-# INLINABLE fold #-}
  foldr :: (a -> b -> b) -> b -> IntMap a -> b
foldr = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr
  {-# INLINE foldr #-}
  foldl :: (b -> a -> b) -> b -> IntMap a -> b
foldl = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl
  {-# INLINE foldl #-}
  foldMap :: (a -> m) -> IntMap a -> m
foldMap a -> m
f IntMap a
t = IntMap a -> m
go IntMap a
t
    where go :: IntMap a -> m
go IntMap a
Nil = m
forall a. Monoid a => a
mempty
          go (Tip Key
_ a
v) = a -> m
f a
v
          go (Bin Key
_ Key
m IntMap a
l IntMap a
r)
            | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = IntMap a -> m
go IntMap a
r m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
l
            | Bool
otherwise = IntMap a -> m
go IntMap a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
r
  {-# INLINE foldMap #-}
  foldl' :: (b -> a -> b) -> b -> IntMap a -> b
foldl' = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl'
  {-# INLINE foldl' #-}
  foldr' :: (a -> b -> b) -> b -> IntMap a -> b
foldr' = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr'
  {-# INLINE foldr' #-}
#if MIN_VERSION_base(4,8,0)
  length :: IntMap a -> Key
length = IntMap a -> Key
forall a. IntMap a -> Key
size
  {-# INLINE length #-}
  null :: IntMap a -> Bool
null   = IntMap a -> Bool
forall a. IntMap a -> Bool
null
  {-# INLINE null #-}
  toList :: IntMap a -> [a]
toList = IntMap a -> [a]
forall a. IntMap a -> [a]
elems -- NB: Foldable.toList /= IntMap.toList
  {-# INLINE toList #-}
  elem :: a -> IntMap a -> Bool
elem = a -> IntMap a -> Bool
forall a. Eq a => a -> IntMap a -> Bool
go
    where go :: t -> IntMap t -> Bool
go !t
_ IntMap t
Nil = Bool
False
          go t
x (Tip Key
_ t
y) = t
x t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
y
          go t
x (Bin Key
_ Key
_ IntMap t
l IntMap t
r) = t -> IntMap t -> Bool
go t
x IntMap t
l Bool -> Bool -> Bool
|| t -> IntMap t -> Bool
go t
x IntMap t
r
  {-# INLINABLE elem #-}
  maximum :: IntMap a -> a
maximum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
    where start :: IntMap t -> t
start IntMap t
Nil = [Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.maximum (for Data.IntMap): empty map"
          start (Tip Key
_ t
y) = t
y
          start (Bin Key
_ Key
m IntMap t
l IntMap t
r)
            | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = t -> IntMap t -> t
forall t. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
r) IntMap t
l
            | Bool
otherwise = t -> IntMap t -> t
forall t. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
l) IntMap t
r

          go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
          go t
m (Tip Key
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
max t
m t
y
          go t
m (Bin Key
_ Key
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
  {-# INLINABLE maximum #-}
  minimum :: IntMap a -> a
minimum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
    where start :: IntMap t -> t
start IntMap t
Nil = [Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.minimum (for Data.IntMap): empty map"
          start (Tip Key
_ t
y) = t
y
          start (Bin Key
_ Key
m IntMap t
l IntMap t
r)
            | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = t -> IntMap t -> t
forall t. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
r) IntMap t
l
            | Bool
otherwise = t -> IntMap t -> t
forall t. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
l) IntMap t
r

          go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
          go t
m (Tip Key
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
min t
m t
y
          go t
m (Bin Key
_ Key
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
  {-# INLINABLE minimum #-}
  sum :: IntMap a -> a
sum = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
  {-# INLINABLE sum #-}
  product :: IntMap a -> a
product = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
  {-# INLINABLE product #-}
#endif

-- | Traverses in order of increasing key.
instance Traversable IntMap where
    traverse :: (a -> f b) -> IntMap a -> f (IntMap b)
traverse a -> f b
f = (Key -> a -> f b) -> IntMap a -> f (IntMap b)
forall (t :: * -> *) a b.
Applicative t =>
(Key -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey (\Key
_ -> a -> f b
f)
    {-# INLINE traverse #-}

instance NFData a => NFData (IntMap a) where
    rnf :: IntMap a -> ()
rnf IntMap a
Nil = ()
    rnf (Tip Key
_ a
v) = a -> ()
forall a. NFData a => a -> ()
rnf a
v
    rnf (Bin Key
_ Key
_ IntMap a
l IntMap a
r) = IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
l () -> () -> ()
`seq` IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
r

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance Data a => Data (IntMap a) where
  gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IntMap a -> c (IntMap a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z IntMap a
im = ([(Key, a)] -> IntMap a) -> c ([(Key, a)] -> IntMap a)
forall g. g -> c g
z [(Key, a)] -> IntMap a
forall a. [(Key, a)] -> IntMap a
fromList c ([(Key, a)] -> IntMap a) -> [(Key, a)] -> c (IntMap a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` (IntMap a -> [(Key, a)]
forall a. IntMap a -> [(Key, a)]
toList IntMap a
im)
  toConstr :: IntMap a -> Constr
toConstr IntMap a
_     = Constr
fromListConstr
  gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (IntMap a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c  = case Constr -> Key
constrIndex Constr
c of
    Key
1 -> c ([(Key, a)] -> IntMap a) -> c (IntMap a)
forall b r. Data b => c (b -> r) -> c r
k (([(Key, a)] -> IntMap a) -> c ([(Key, a)] -> IntMap a)
forall r. r -> c r
z [(Key, a)] -> IntMap a
forall a. [(Key, a)] -> IntMap a
fromList)
    Key
_ -> [Char] -> c (IntMap a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
  dataTypeOf :: IntMap a -> DataType
dataTypeOf IntMap a
_   = DataType
intMapDataType
  dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (IntMap a))
dataCast1 forall d. Data d => c (t d)
f    = c (t a) -> Maybe (c (IntMap a))
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
       (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f

fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
intMapDataType [Char]
"fromList" [] Fixity
Prefix

intMapDataType :: DataType
intMapDataType :: DataType
intMapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.IntMap.Internal.IntMap" [Constr
fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the map empty?
--
-- > Data.IntMap.null (empty)           == True
-- > Data.IntMap.null (singleton 1 'a') == False

null :: IntMap a -> Bool
null :: IntMap a -> Bool
null IntMap a
Nil = Bool
True
null IntMap a
_   = Bool
False
{-# INLINE null #-}

-- | /O(n)/. Number of elements in the map.
--
-- > size empty                                   == 0
-- > size (singleton 1 'a')                       == 1
-- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3
size :: IntMap a -> Int
size :: IntMap a -> Key
size = Key -> IntMap a -> Key
forall a a. Num a => a -> IntMap a -> a
go Key
0
  where
    go :: a -> IntMap a -> a
go !a
acc (Bin Key
_ Key
_ IntMap a
l IntMap a
r) = a -> IntMap a -> a
go (a -> IntMap a -> a
go a
acc IntMap a
l) IntMap a
r
    go a
acc (Tip Key
_ a
_) = a
1 a -> a -> a
forall a. Num a => a -> a -> a
+ a
acc
    go a
acc IntMap a
Nil = a
acc

-- | /O(min(n,W))/. Is the key a member of the map?
--
-- > member 5 (fromList [(5,'a'), (3,'b')]) == True
-- > member 1 (fromList [(5,'a'), (3,'b')]) == False

-- See Note: Local 'go' functions and capturing]
member :: Key -> IntMap a -> Bool
member :: Key -> IntMap a -> Bool
member !Key
k = IntMap a -> Bool
go
  where
    go :: IntMap a -> Bool
go (Bin Key
p Key
m IntMap a
l IntMap a
r) | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = Bool
False
                     | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> Bool
go IntMap a
l
                     | Bool
otherwise = IntMap a -> Bool
go IntMap a
r
    go (Tip Key
kx a
_) = Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kx
    go IntMap a
Nil = Bool
False

-- | /O(min(n,W))/. Is the key not a member of the map?
--
-- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False
-- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True

notMember :: Key -> IntMap a -> Bool
notMember :: Key -> IntMap a -> Bool
notMember Key
k IntMap a
m = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Key -> IntMap a -> Bool
forall a. Key -> IntMap a -> Bool
member Key
k IntMap a
m

-- | /O(min(n,W))/. Lookup the value at a key in the map. See also 'Data.Map.lookup'.

-- See Note: Local 'go' functions and capturing]
lookup :: Key -> IntMap a -> Maybe a
lookup :: Key -> IntMap a -> Maybe a
lookup !Key
k = IntMap a -> Maybe a
go
  where
    go :: IntMap a -> Maybe a
go (Bin Key
p Key
m IntMap a
l IntMap a
r) | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = Maybe a
forall a. Maybe a
Nothing
                     | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> Maybe a
go IntMap a
l
                     | Bool
otherwise = IntMap a -> Maybe a
go IntMap a
r
    go (Tip Key
kx a
x) | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kx   = a -> Maybe a
forall a. a -> Maybe a
Just a
x
                  | Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
    go IntMap a
Nil = Maybe a
forall a. Maybe a
Nothing


-- See Note: Local 'go' functions and capturing]
find :: Key -> IntMap a -> a
find :: Key -> IntMap a -> a
find !Key
k = IntMap a -> a
go
  where
    go :: IntMap a -> a
go (Bin Key
p Key
m IntMap a
l IntMap a
r) | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = a
not_found
                     | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> a
go IntMap a
l
                     | Bool
otherwise = IntMap a -> a
go IntMap a
r
    go (Tip Key
kx a
x) | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kx   = a
x
                  | Bool
otherwise = a
not_found
    go IntMap a
Nil = a
not_found

    not_found :: a
not_found = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char]
"IntMap.!: key " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Key -> [Char]
forall a. Show a => a -> [Char]
show Key
k [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" is not an element of the map")

-- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@
-- returns the value at key @k@ or returns @def@ when the key is not an
-- element of the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'

-- See Note: Local 'go' functions and capturing]
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault a
def !Key
k = IntMap a -> a
go
  where
    go :: IntMap a -> a
go (Bin Key
p Key
m IntMap a
l IntMap a
r) | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = a
def
                     | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> a
go IntMap a
l
                     | Bool
otherwise = IntMap a -> a
go IntMap a
r
    go (Tip Key
kx a
x) | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kx   = a
x
                  | Bool
otherwise = a
def
    go IntMap a
Nil = a
def

-- | /O(log n)/. Find largest key smaller than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')

-- See Note: Local 'go' functions and capturing.
lookupLT :: Key -> IntMap a -> Maybe (Key, a)
lookupLT :: Key -> IntMap a -> Maybe (Key, a)
lookupLT !Key
k IntMap a
t = case IntMap a
t of
    Bin Key
_ Key
m IntMap a
l IntMap a
r | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0 -> if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
>= Key
0 then IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def (Bin Key
p Key
m IntMap a
l IntMap a
r)
      | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
p then IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
r
      | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
l IntMap a
r
    go IntMap a
def (Tip Key
ky a
y)
      | Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
<= Key
ky   = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def
      | Bool
otherwise = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def

-- | /O(log n)/. Find smallest key greater than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGT :: Key -> IntMap a -> Maybe (Key, a)
lookupGT :: Key -> IntMap a -> Maybe (Key, a)
lookupGT !Key
k IntMap a
t = case IntMap a
t of
    Bin Key
_ Key
m IntMap a
l IntMap a
r | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0 -> if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
>= Key
0 then IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
l IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def (Bin Key
p Key
m IntMap a
l IntMap a
r)
      | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
p then IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def
      | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
r IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def IntMap a
r
    go IntMap a
def (Tip Key
ky a
y)
      | Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
>= Key
ky   = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def
      | Bool
otherwise = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def

-- | /O(log n)/. Find largest key smaller or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')

-- See Note: Local 'go' functions and capturing.
lookupLE :: Key -> IntMap a -> Maybe (Key, a)
lookupLE :: Key -> IntMap a -> Maybe (Key, a)
lookupLE !Key
k IntMap a
t = case IntMap a
t of
    Bin Key
_ Key
m IntMap a
l IntMap a
r | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0 -> if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
>= Key
0 then IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def (Bin Key
p Key
m IntMap a
l IntMap a
r)
      | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
p then IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
r
      | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
l IntMap a
r
    go IntMap a
def (Tip Key
ky a
y)
      | Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
ky    = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def
      | Bool
otherwise = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
def

-- | /O(log n)/. Find smallest key greater or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGE :: Key -> IntMap a -> Maybe (Key, a)
lookupGE :: Key -> IntMap a -> Maybe (Key, a)
lookupGE !Key
k IntMap a
t = case IntMap a
t of
    Bin Key
_ Key
m IntMap a
l IntMap a
r | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0 -> if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
>= Key
0 then IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
l IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def (Bin Key
p Key
m IntMap a
l IntMap a
r)
      | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
p then IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def
      | Key -> Key -> Bool
zero Key
k Key
m  = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
r IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Key, a)
go IntMap a
def IntMap a
r
    go IntMap a
def (Tip Key
ky a
y)
      | Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
> Key
ky    = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def
      | Bool
otherwise = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
def


-- Helper function for lookupGE and lookupGT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMin :: IntMap a -> Maybe (Key, a)
unsafeFindMin :: IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
Nil = Maybe (Key, a)
forall a. Maybe a
Nothing
unsafeFindMin (Tip Key
ky a
y) = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
unsafeFindMin (Bin Key
_ Key
_ IntMap a
l IntMap a
_) = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMin IntMap a
l

-- Helper function for lookupLE and lookupLT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMax :: IntMap a -> Maybe (Key, a)
unsafeFindMax :: IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
Nil = Maybe (Key, a)
forall a. Maybe a
Nothing
unsafeFindMax (Tip Key
ky a
y) = (Key, a) -> Maybe (Key, a)
forall a. a -> Maybe a
Just (Key
ky, a
y)
unsafeFindMax (Bin Key
_ Key
_ IntMap a
_ IntMap a
r) = IntMap a -> Maybe (Key, a)
forall a. IntMap a -> Maybe (Key, a)
unsafeFindMax IntMap a
r

{--------------------------------------------------------------------
  Disjoint
--------------------------------------------------------------------}
-- | /O(n+m)/. Check whether the key sets of two maps are disjoint
-- (i.e. their 'intersection' is empty).
--
-- > disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())])   == True
-- > disjoint (fromList [(2,'a')]) (fromList [(1,'a'), (2,'b')]) == False
-- > disjoint (fromList [])        (fromList [])                 == True
--
-- > disjoint a b == null (intersection a b)
--
-- @since 0.6.2.1
disjoint :: IntMap a -> IntMap b -> Bool
disjoint :: IntMap a -> IntMap b -> Bool
disjoint IntMap a
Nil IntMap b
_ = Bool
True
disjoint IntMap a
_ IntMap b
Nil = Bool
True
disjoint (Tip Key
kx a
_) IntMap b
ys = Key -> IntMap b -> Bool
forall a. Key -> IntMap a -> Bool
notMember Key
kx IntMap b
ys
disjoint IntMap a
xs (Tip Key
ky b
_) = Key -> IntMap a -> Bool
forall a. Key -> IntMap a -> Bool
notMember Key
ky IntMap a
xs
disjoint t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Key
p2 Key
m2 IntMap b
l2 IntMap b
r2)
  | Key -> Key -> Bool
shorter Key
m1 Key
m2 = Bool
disjoint1
  | Key -> Key -> Bool
shorter Key
m2 Key
m1 = Bool
disjoint2
  | Key
p1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
p2      = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
l2 Bool -> Bool -> Bool
&& IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
r2
  | Bool
otherwise     = Bool
True
  where
    disjoint1 :: Bool
disjoint1 | Key -> Key -> Key -> Bool
nomatch Key
p2 Key
p1 Key
m1 = Bool
True
              | Key -> Key -> Bool
zero Key
p2 Key
m1       = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
t2
              | Bool
otherwise        = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
t2
    disjoint2 :: Bool
disjoint2 | Key -> Key -> Key -> Bool
nomatch Key
p1 Key
p2 Key
m2 = Bool
True
              | Key -> Key -> Bool
zero Key
p1 Key
m2       = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
l2
              | Bool
otherwise        = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
r2

{--------------------------------------------------------------------
  Compose
--------------------------------------------------------------------}
-- | Relate the keys of one map to the values of
-- the other, by using the values of the former as keys for lookups
-- in the latter.
--
-- Complexity: \( O(n * \min(m,W)) \), where \(m\) is the size of the first argument
--
-- > compose (fromList [('a', "A"), ('b', "B")]) (fromList [(1,'a'),(2,'b'),(3,'z')]) = fromList [(1,"A"),(2,"B")]
--
-- @
-- ('compose' bc ab '!?') = (bc '!?') <=< (ab '!?')
-- @
--
-- __Note:__ Prior to v0.6.4, "Data.IntMap.Strict" exposed a version of
-- 'compose' that forced the values of the output 'IntMap'. This version does
-- not force these values.
--
-- @since 0.6.3.1
compose :: IntMap c -> IntMap Int -> IntMap c
compose :: IntMap c -> IntMap Key -> IntMap c
compose IntMap c
bc !IntMap Key
ab
  | IntMap c -> Bool
forall a. IntMap a -> Bool
null IntMap c
bc = IntMap c
forall a. IntMap a
empty
  | Bool
otherwise = (Key -> Maybe c) -> IntMap Key -> IntMap c
forall a b. (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe (IntMap c
bc IntMap c -> Key -> Maybe c
forall a. IntMap a -> Key -> Maybe a
!?) IntMap Key
ab

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty map.
--
-- > empty      == fromList []
-- > size empty == 0

empty :: IntMap a
empty :: IntMap a
empty
  = IntMap a
forall a. IntMap a
Nil
{-# INLINE empty #-}

-- | /O(1)/. A map of one element.
--
-- > singleton 1 'a'        == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: Key -> a -> IntMap a
singleton :: Key -> a -> IntMap a
singleton Key
k a
x
  = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value, i.e. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty                         == singleton 5 'x'

insert :: Key -> a -> IntMap a -> IntMap a
insert :: Key -> a -> IntMap a -> IntMap a
insert !Key
k a
x t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
p IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m (Key -> a -> IntMap a -> IntMap a
forall a. Key -> a -> IntMap a -> IntMap a
insert Key
k a
x IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m IntMap a
l (Key -> a -> IntMap a -> IntMap a
forall a. Key -> a -> IntMap a -> IntMap a
insert Key
k a
x IntMap a
r)
insert Key
k a
x t :: IntMap a
t@(Tip Key
ky a
_)
  | Key
kKey -> Key -> Bool
forall a. Eq a => a -> a -> Bool
==Key
ky         = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x
  | Bool
otherwise     = Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
ky IntMap a
t
insert Key
k a
x IntMap a
Nil = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x

-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f new_value old_value@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty                         == singleton 5 "xxx"

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith a -> a -> a
f Key
k a
x IntMap a
t
  = (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
forall a. (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey (\Key
_ a
x' a
y' -> a -> a -> a
f a
x' a
y') Key
k a
x IntMap a
t

-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f key new_value old_value@.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty                         == singleton 5 "xxx"

insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey Key -> a -> a -> a
f !Key
k a
x t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
p IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m ((Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
forall a. (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey Key -> a -> a -> a
f Key
k a
x IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m IntMap a
l ((Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
forall a. (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey Key -> a -> a -> a
f Key
k a
x IntMap a
r)
insertWithKey Key -> a -> a -> a
f Key
k a
x t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
ky       = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k (Key -> a -> a -> a
f Key
k a
x a
y)
  | Bool
otherwise     = Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
ky IntMap a
t
insertWithKey Key -> a -> a -> a
_ Key
k a
x IntMap a
Nil = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x

-- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty                         == (Nothing,  singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "x")])

insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Key -> a -> a -> a
f !Key
k a
x t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = (Maybe a
forall a. Maybe a
Nothing,Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
p IntMap a
t)
  | Key -> Key -> Bool
zero Key
k Key
m      = let (Maybe a
found,IntMap a
l') = (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Key -> a -> a -> a
f Key
k a
x IntMap a
l
                    in (Maybe a
found,Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m IntMap a
l' IntMap a
r)
  | Bool
otherwise     = let (Maybe a
found,IntMap a
r') = (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Key -> a -> a -> a
f Key
k a
x IntMap a
r
                    in (Maybe a
found,Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m IntMap a
l IntMap a
r')
insertLookupWithKey Key -> a -> a -> a
f Key
k a
x t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
ky       = (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k (Key -> a -> a -> a
f Key
k a
x a
y))
  | Bool
otherwise     = (Maybe a
forall a. Maybe a
Nothing,Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
ky IntMap a
t)
insertLookupWithKey Key -> a -> a -> a
_ Key
k a
x IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x)


{--------------------------------------------------------------------
  Deletion
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
--
-- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > delete 5 empty                         == empty

delete :: Key -> IntMap a -> IntMap a
delete :: Key -> IntMap a -> IntMap a
delete !Key
k t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p Key
m (Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
delete Key
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p Key
m IntMap a
l (Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
delete Key
k IntMap a
r)
delete Key
k t :: IntMap a
t@(Tip Key
ky a
_)
  | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
ky       = IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = IntMap a
t
delete Key
_k IntMap a
Nil = IntMap a
forall a. IntMap a
Nil

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty                         == empty

adjust ::  (a -> a) -> Key -> IntMap a -> IntMap a
adjust :: (a -> a) -> Key -> IntMap a -> IntMap a
adjust a -> a
f Key
k IntMap a
m
  = (Key -> a -> a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey (\Key
_ a
x -> a -> a
f a
x) Key
k IntMap a
m

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty                         == empty

adjustWithKey ::  (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey Key -> a -> a
f !Key
k t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m ((Key -> a -> a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey Key -> a -> a
f Key
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin Key
p Key
m IntMap a
l ((Key -> a -> a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey Key -> a -> a
f Key
k IntMap a
r)
adjustWithKey Key -> a -> a
f Key
k t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
ky       = Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
ky (Key -> a -> a
f Key
k a
y)
  | Bool
otherwise     = IntMap a
t
adjustWithKey Key -> a -> a
_ Key
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update ::  (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update a -> Maybe a
f
  = (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey (\Key
_ a
x -> a -> Maybe a
f a
x)

-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey Key -> a -> Maybe a
f !Key
k t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p Key
m ((Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey Key -> a -> Maybe a
f Key
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p Key
m IntMap a
l ((Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
forall a. (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey Key -> a -> Maybe a
f Key
k IntMap a
r)
updateWithKey Key -> a -> Maybe a
f Key
k t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
k Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
ky       = case (Key -> a -> Maybe a
f Key
k a
y) of
                      Just a
y' -> Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
ky a
y'
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = IntMap a
t
updateWithKey Key -> a -> Maybe a
_ Key
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil

-- | /O(min(n,W))/. Lookup and update.
-- The function returns original value, if it is updated.
-- This is different behavior than 'Data.Map.updateLookupWithKey'.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

updateLookupWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Key -> a -> Maybe a
f !Key
k t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = (Maybe a
forall a. Maybe a
Nothing,IntMap a
t)
  | Key -> Key -> Bool
zero Key
k Key
m      = let !(Maybe a
found,IntMap a
l') = (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Key -> a -> Maybe a
f Key
k IntMap a
l
                    in (Maybe a
found,Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p Key
m IntMap a
l' IntMap a
r)
  | Bool
otherwise     = let !(Maybe a
found,IntMap a
r') = (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Key -> a -> Maybe a
f Key
k IntMap a
r
                    in (Maybe a
found,Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p Key
m IntMap a
l IntMap a
r')
updateLookupWithKey Key -> a -> Maybe a
f Key
k t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
kKey -> Key -> Bool
forall a. Eq a => a -> a -> Bool
==Key
ky         = case (Key -> a -> Maybe a
f Key
k a
y) of
                      Just a
y' -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
ky a
y')
                      Maybe a
Nothing -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,IntMap a
forall a. IntMap a
Nil)
  | Bool
otherwise     = (Maybe a
forall a. Maybe a
Nothing,IntMap a
t)
updateLookupWithKey Key -> a -> Maybe a
_ Key
_ IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,IntMap a
forall a. IntMap a
Nil)



-- | /O(min(n,W))/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in an 'IntMap'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f !Key
k t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key -> Key -> Key -> Bool
nomatch Key
k Key
p Key
m = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Maybe a
Nothing -> IntMap a
t
                      Just a
x -> Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
p IntMap a
t
  | Key -> Key -> Bool
zero Key
k Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p Key
m ((Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Key
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p Key
m IntMap a
l ((Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Key
k IntMap a
r)
alter Maybe a -> Maybe a
f Key
k t :: IntMap a
t@(Tip Key
ky a
y)
  | Key
kKey -> Key -> Bool
forall a. Eq a => a -> a -> Bool
==Key
ky         = case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
y) of
                      Just a
x -> Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
ky a
x
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Just a
x -> Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
k (Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x) Key
ky IntMap a
t
                      Maybe a
Nothing -> Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
ky a
y
alter Maybe a -> Maybe a
f Key
k IntMap a
Nil     = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Just a
x -> Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k a
x
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil

-- | /O(log n)/. The expression (@'alterF' f k map@) alters the value @x@ at
-- @k@, or absence thereof.  'alterF' can be used to inspect, insert, delete,
-- or update a value in an 'IntMap'.  In short : @'lookup' k <$> 'alterF' f k m = f
-- ('lookup' k m)@.
--
-- Example:
--
-- @
-- interactiveAlter :: Int -> IntMap String -> IO (IntMap String)
-- interactiveAlter k m = alterF f k m where
--   f Nothing = do
--      putStrLn $ show k ++
--          " was not found in the map. Would you like to add it?"
--      getUserResponse1 :: IO (Maybe String)
--   f (Just old) = do
--      putStrLn $ "The key is currently bound to " ++ show old ++
--          ". Would you like to change or delete it?"
--      getUserResponse2 :: IO (Maybe String)
-- @
--
-- 'alterF' is the most general operation for working with an individual
-- key that may or may not be in a given map.
--
-- Note: 'alterF' is a flipped version of the @at@ combinator from
-- @Control.Lens.At@.
--
-- @since 0.5.8

alterF :: Functor f
       => (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
-- This implementation was stolen from 'Control.Lens.At'.
alterF :: (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
alterF Maybe a -> f (Maybe a)
f Key
k IntMap a
m = ((Maybe a -> IntMap a) -> f (Maybe a) -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) ((Maybe a -> IntMap a) -> f (IntMap a))
-> (Maybe a -> IntMap a) -> f (IntMap a)
forall a b. (a -> b) -> a -> b
$ \Maybe a
fres ->
  case Maybe a
fres of
    Maybe a
Nothing -> IntMap a -> (a -> IntMap a) -> Maybe a -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
m (IntMap a -> a -> IntMap a
forall a b. a -> b -> a
const (Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
delete Key
k IntMap a
m)) Maybe a
mv
    Just a
v' -> Key -> a -> IntMap a -> IntMap a
forall a. Key -> a -> IntMap a -> IntMap a
insert Key
k a
v' IntMap a
m
  where mv :: Maybe a
mv = Key -> IntMap a -> Maybe a
forall a. Key -> IntMap a -> Maybe a
lookup Key
k IntMap a
m

{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
-- | The union of a list of maps.
--
-- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "b"), (5, "a"), (7, "C")]
-- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]
-- >     == fromList [(3, "B3"), (5, "A3"), (7, "C")]

unions :: Foldable f => f (IntMap a) -> IntMap a
unions :: f (IntMap a) -> IntMap a
unions f (IntMap a)
xs
  = (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union IntMap a
forall a. IntMap a
empty f (IntMap a)
xs

-- | The union of a list of maps, with a combining operation.
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: Foldable f => (a->a->a) -> f (IntMap a) -> IntMap a
unionsWith :: (a -> a -> a) -> f (IntMap a) -> IntMap a
unionsWith a -> a -> a
f f (IntMap a)
ts
  = (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f) IntMap a
forall a. IntMap a
empty f (IntMap a)
ts

-- | /O(n+m)/. The (left-biased) union of two maps.
-- It prefers the first map when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
--
-- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

union :: IntMap a -> IntMap a -> IntMap a
union :: IntMap a -> IntMap a -> IntMap a
union IntMap a
m1 IntMap a
m2
  = (Key -> Key -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2

-- | /O(n+m)/. The union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f IntMap a
m1 IntMap a
m2
  = (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey (\Key
_ a
x a
y -> a -> a -> a
f a
x a
y) IntMap a
m1 IntMap a
m2

-- | /O(n+m)/. The union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey Key -> a -> a -> a
f IntMap a
m1 IntMap a
m2
  = (Key -> Key -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
Bin (\(Tip Key
k1 a
x1) (Tip Key
_k2 a
x2) -> Key -> a -> IntMap a
forall a. Key -> a -> IntMap a
Tip Key
k1 (Key -> a -> a -> a
f Key
k1 a
x1 a
x2)) IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two maps (based on keys).
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

difference :: IntMap a -> IntMap b -> IntMap a
difference :: IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2
  = (Key -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Key -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey (\Key
_ a
_ b
_ -> Maybe a
forall a. Maybe a
Nothing) IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2

-- | /O(n+m)/. Difference with a combining function.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- >     == singleton 3 "b:B"

differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
  = (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
forall a b.
(Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey (\Key
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y) IntMap a
m1 IntMap b
m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference).
-- If it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- >     == singleton 3 "3:b|B"

differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey Key -> a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
  = (Key -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Key -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Key -> a -> b -> Maybe a
f IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2


-- TODO(wrengr): re-verify that asymptotic bound
-- | /O(n+m)/. Remove all the keys in a given set from a map.
--
-- @
-- m \`withoutKeys\` s = 'filterWithKey' (\k _ -> k ``IntSet.notMember`` s) m
-- @
--
-- @since 0.5.8
withoutKeys :: IntMap a -> IntSet.IntSet -> IntMap a
withoutKeys :: IntMap a -> IntSet -> IntMap a
withoutKeys t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Key
p2 Key
m2 IntSet
l2 IntSet
r2)
    | Key -> Key -> Bool
shorter Key
m1 Key
m2  = IntMap a
difference1
    | Key -> Key -> Bool
shorter Key
m2 Key
m1  = IntMap a
difference2
    | Key
p1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
p2       = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p1 Key
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
r2)
    | Bool
otherwise      = IntMap a
t1
    where
    difference1 :: IntMap a
difference1
        | Key -> Key -> Key -> Bool
nomatch Key
p2 Key
p1 Key
m1  = IntMap a
t1
        | Key -> Key -> Bool
zero Key
p2 Key
m1        = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p1 Key
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
t2) IntMap a
r1
        | Bool
otherwise         = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p1 Key
m1 IntMap a
l1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
t2)
    difference2 :: IntMap a
difference2
        | Key -> Key -> Key -> Bool
nomatch Key
p1 Key
p2 Key
m2  = IntMap a
t1
        | Key -> Key -> Bool
zero Key
p1 Key
m2        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
l2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
r2
withoutKeys t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Key
p2 Nat
bm2) =
    let minbit :: Nat
minbit = Key -> Nat
bitmapOf Key
p1
        lt_minbit :: Nat
lt_minbit = Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        maxbit :: Nat
maxbit = Key -> Nat
bitmapOf (Key
p1 Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. (Key
m1 Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. (Key
m1 Key -> Key -> Key
forall a. Num a => a -> a -> a
- Key
1)))
        gt_maxbit :: Nat
gt_maxbit = (-Nat
maxbit) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
maxbit
    -- TODO(wrengr): should we manually inline/unroll 'updatePrefix'
    -- and 'withoutBM' here, in order to avoid redundant case analyses?
    in Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Key
p2 IntMap a
t1 ((IntMap a -> IntMap a) -> IntMap a)
-> (IntMap a -> IntMap a) -> IntMap a
forall a b. (a -> b) -> a -> b
$ Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
lt_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
gt_maxbit)
withoutKeys t1 :: IntMap a
t1@(Bin Key
_ Key
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
t1
withoutKeys t1 :: IntMap a
t1@(Tip Key
k1 a
_) IntSet
t2
    | Key
k1 Key -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
forall a. IntMap a
Nil
    | Bool
otherwise = IntMap a
t1
withoutKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil


updatePrefix
    :: IntSetPrefix -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix :: Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix !Key
kp t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r) IntMap a -> IntMap a
f
    | Key
m Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.suffixBitMask Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
/= Key
0 =
        if Key
p Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kp then IntMap a -> IntMap a
f IntMap a
t else IntMap a
t
    | Key -> Key -> Key -> Bool
nomatch Key
kp Key
p Key
m = IntMap a
t
    | Key -> Key -> Bool
zero Key
kp Key
m      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Key
p Key
m (Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Key
kp IntMap a
l IntMap a -> IntMap a
f) IntMap a
r
    | Bool
otherwise      = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
binCheckRight Key
p Key
m IntMap a
l (Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Key -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Key
kp IntMap a
r IntMap a -> IntMap a
f)
updatePrefix Key
kp t :: IntMap a
t@(Tip Key
kx a
_) IntMap a -> IntMap a
f
    | Key
kx Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kp = IntMap a -> IntMap a
f IntMap a
t
    | Bool
otherwise = IntMap a
t
updatePrefix Key
_ IntMap a
Nil IntMap a -> IntMap a
_ = IntMap a
forall a. IntMap a
Nil


withoutBM :: IntSetBitMap -> IntMap a -> IntMap a
withoutBM :: Nat -> IntMap a -> IntMap a
withoutBM Nat
0 IntMap a
t = IntMap a
t
withoutBM Nat
bm (Bin Key
p Key
m IntMap a
l IntMap a
r) =
    let leftBits :: Nat
leftBits = Key -> Nat
bitmapOf (Key
p Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. Key
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
        bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL -- = (bm .&. complement leftBits)
    in  Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmR IntMap a
r)
withoutBM Nat
bm t :: IntMap a
t@(Tip Key
k a
_)
    -- TODO(wrengr): need we manually inline 'IntSet.Member' here?
    | Key
k Key -> IntSet -> Bool
`IntSet.member` Key -> Nat -> IntSet
IntSet.Tip (Key
k Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask) Nat
bm = IntMap a
forall a. IntMap a
Nil
    | Bool
otherwise = IntMap a
t
withoutBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The (left-biased) intersection of two maps (based on keys).
--
-- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersection :: IntMap a -> IntMap b -> IntMap a
intersection :: IntMap a -> IntMap b -> IntMap a
intersection IntMap a
m1 IntMap b
m2
  = (Key -> Key -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap b -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall c a b.
(Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const (IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2


-- TODO(wrengr): re-verify that asymptotic bound
-- | /O(n+m)/. The restriction of a map to the keys in a set.
--
-- @
-- m \`restrictKeys\` s = 'filterWithKey' (\k _ -> k ``IntSet.member`` s) m
-- @
--
-- @since 0.5.8
restrictKeys :: IntMap a -> IntSet.IntSet -> IntMap a
restrictKeys :: IntMap a -> IntSet -> IntMap a
restrictKeys t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Key
p2 Key
m2 IntSet
l2 IntSet
r2)
    | Key -> Key -> Bool
shorter Key
m1 Key
m2  = IntMap a
intersection1
    | Key -> Key -> Bool
shorter Key
m2 Key
m1  = IntMap a
intersection2
    | Key
p1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
p2       = Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p1 Key
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
r2)
    | Bool
otherwise      = IntMap a
forall a. IntMap a
Nil
    where
    intersection1 :: IntMap a
intersection1
        | Key -> Key -> Key -> Bool
nomatch Key
p2 Key
p1 Key
m1  = IntMap a
forall a. IntMap a
Nil
        | Key -> Key -> Bool
zero Key
p2 Key
m1        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
t2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
t2
    intersection2 :: IntMap a
intersection2
        | Key -> Key -> Key -> Bool
nomatch Key
p1 Key
p2 Key
m2  = IntMap a
forall a. IntMap a
Nil
        | Key -> Key -> Bool
zero Key
p1 Key
m2        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
l2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
r2
restrictKeys t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Key
p2 Nat
bm2) =
    let minbit :: Nat
minbit = Key -> Nat
bitmapOf Key
p1
        ge_minbit :: Nat
ge_minbit = Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
        maxbit :: Nat
maxbit = Key -> Nat
bitmapOf (Key
p1 Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. (Key
m1 Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. (Key
m1 Key -> Key -> Key
forall a. Num a => a -> a -> a
- Key
1)))
        le_maxbit :: Nat
le_maxbit = Nat
maxbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. (Nat
maxbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
    -- TODO(wrengr): should we manually inline/unroll 'lookupPrefix'
    -- and 'restrictBM' here, in order to avoid redundant case analyses?
    in Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
ge_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
le_maxbit) (Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
lookupPrefix Key
p2 IntMap a
t1)
restrictKeys (Bin Key
_ Key
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
forall a. IntMap a
Nil
restrictKeys t1 :: IntMap a
t1@(Tip Key
k1 a
_) IntSet
t2
    | Key
k1 Key -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
t1
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil


-- | /O(min(n,W))/. Restrict to the sub-map with all keys matching
-- a key prefix.
lookupPrefix :: IntSetPrefix -> IntMap a -> IntMap a
lookupPrefix :: Key -> IntMap a -> IntMap a
lookupPrefix !Key
kp t :: IntMap a
t@(Bin Key
p Key
m IntMap a
l IntMap a
r)
    | Key
m Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.suffixBitMask Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
/= Key
0 =
        if Key
p Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kp then IntMap a
t else IntMap a
forall a. IntMap a
Nil
    | Key -> Key -> Key -> Bool
nomatch Key
kp Key
p Key
m = IntMap a
forall a. IntMap a
Nil
    | Key -> Key -> Bool
zero Key
kp Key
m      = Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
lookupPrefix Key
kp IntMap a
l
    | Bool
otherwise      = Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> IntMap a
lookupPrefix Key
kp IntMap a
r
lookupPrefix Key
kp t :: IntMap a
t@(Tip Key
kx a
_)
    | (Key
kx Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask) Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
kp = IntMap a
t
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
lookupPrefix Key
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


restrictBM :: IntSetBitMap -> IntMap a -> IntMap a
restrictBM :: Nat -> IntMap a -> IntMap a
restrictBM Nat
0 IntMap a
_ = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
bm (Bin Key
p Key
m IntMap a
l IntMap a
r) =
    let leftBits :: Nat
leftBits = Key -> Nat
bitmapOf (Key
p Key -> Key -> Key
forall a. Bits a => a -> a -> a
.|. Key
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
        bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL -- = (bm .&. complement leftBits)
    in  Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmR IntMap a
r)
restrictBM Nat
bm t :: IntMap a
t@(Tip Key
k a
_)
    -- TODO(wrengr): need we manually inline 'IntSet.Member' here?
    | Key
k Key -> IntSet -> Bool
`IntSet.member` Key -> Nat -> IntSet
IntSet.Tip (Key
k Key -> Key -> Key
forall a. Bits a => a -> a -> a
.&. Key
IntSet.prefixBitMask) Nat
bm = IntMap a
t
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


-- | /O(n+m)/. The intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith a -> b -> c
f IntMap a
m1 IntMap b
m2
  = (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
forall a b c.
(Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey (\Key
_ a
x b
y -> a -> b -> c
f a
x b
y) IntMap a
m1 IntMap b
m2

-- | /O(n+m)/. The intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey Key -> a -> b -> c
f IntMap a
m1 IntMap b
m2
  = (Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap c -> IntMap c -> IntMap c
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin (\(Tip Key
k1 a
x1) (Tip Key
_k2 b
x2) -> Key -> c -> IntMap c
forall a. Key -> a -> IntMap a
Tip Key
k1 (Key -> a -> b -> c
f Key
k1 a
x1 b
x2)) (IntMap c -> IntMap a -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) (IntMap c -> IntMap b -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2

{--------------------------------------------------------------------
  MergeWithKey
--------------------------------------------------------------------}

-- | /O(n+m)/. A high-performance universal combining function. Using
-- 'mergeWithKey', all combining functions can be defined without any loss of
-- efficiency (with exception of 'union', 'difference' and 'intersection',
-- where sharing of some nodes is lost with 'mergeWithKey').
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'IntMap's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
--   values to the @combine@ function. Depending on the result, the key is either
--   present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
--   the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
--   the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.

mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
             -> IntMap a -> IntMap b -> IntMap c
mergeWithKey :: (Key -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Key -> a -> b -> Maybe c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = (Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap c -> IntMap c -> IntMap c
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap c
combine IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2
  where -- We use the lambda form to avoid non-exhaustive pattern matches warning.
        combine :: IntMap a -> IntMap b -> IntMap c
combine = \(Tip Key
k1 a
x1) (Tip Key
_k2 b
x2) ->
          case Key -> a -> b -> Maybe c
f Key
k1 a
x1 b
x2 of
            Maybe c
Nothing -> IntMap c
forall a. IntMap a
Nil
            Just c
x -> Key -> c -> IntMap c
forall a. Key -> a -> IntMap a
Tip Key
k1 c
x
        {-# INLINE combine #-}
{-# INLINE mergeWithKey #-}

-- Slightly more general version of mergeWithKey. It differs in the following:
--
-- * the combining function operates on maps instead of keys and values. The
--   reason is to enable sharing in union, difference and intersection.
--
-- * mergeWithKey' is given an equivalent of bin. The reason is that in union*,
--   Bin constructor can be used, because we know both subtrees are nonempty.

mergeWithKey' :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c)
              -> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
              -> IntMap a -> IntMap b -> IntMap c
mergeWithKey' :: (Key -> Key -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' IntMap a -> IntMap b -> IntMap c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = IntMap a -> IntMap b -> IntMap c
go
  where
    go :: IntMap a -> IntMap b -> IntMap c
go t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Key
p2 Key
m2 IntMap b
l2 IntMap b
r2)
      | Key -> Key -> Bool
shorter Key
m1 Key
m2  = IntMap c
merge1
      | Key -> Key -> Bool
shorter Key
m2 Key
m1  = IntMap c
merge2
      | Key
p1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
p2       = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p1 Key
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
r2)
      | Bool
otherwise      = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
      where
        merge1 :: IntMap c
merge1 | Key -> Key -> Key -> Bool
nomatch Key
p2 Key
p1 Key
m1  = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
               | Key -> Key -> Bool
zero Key
p2 Key
m1        = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p1 Key
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
t2) (IntMap a -> IntMap c
g1 IntMap a
r1)
               | Bool
otherwise         = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p1 Key
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
t2)
        merge2 :: IntMap c
merge2 | Key -> Key -> Key -> Bool
nomatch Key
p1 Key
p2 Key
m2  = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
               | Key -> Key -> Bool
zero Key
p1 Key
m2        = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p2 Key
m2 (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
               | Bool
otherwise         = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p2 Key
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
r2)

    go t1' :: IntMap a
t1'@(Bin Key
_ Key
_ IntMap a
_ IntMap a
_) t2' :: IntMap b
t2'@(Tip Key
k2' b
_) = IntMap b -> Key -> IntMap a -> IntMap c
merge0 IntMap b
t2' Key
k2' IntMap a
t1'
      where
        merge0 :: IntMap b -> Key -> IntMap a -> IntMap c
merge0 IntMap b
t2 Key
k2 t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1)
          | Key -> Key -> Key -> Bool
nomatch Key
k2 Key
p1 Key
m1 = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
          | Key -> Key -> Bool
zero Key
k2 Key
m1 = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p1 Key
m1 (IntMap b -> Key -> IntMap a -> IntMap c
merge0 IntMap b
t2 Key
k2 IntMap a
l1) (IntMap a -> IntMap c
g1 IntMap a
r1)
          | Bool
otherwise  = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p1 Key
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap b -> Key -> IntMap a -> IntMap c
merge0 IntMap b
t2 Key
k2 IntMap a
r1)
        merge0 IntMap b
t2 Key
k2 t1 :: IntMap a
t1@(Tip Key
k1 a
_)
          | Key
k1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
          | Bool
otherwise = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
        merge0 IntMap b
t2 Key
_  IntMap a
Nil = IntMap b -> IntMap c
g2 IntMap b
t2

    go t1 :: IntMap a
t1@(Bin Key
_ Key
_ IntMap a
_ IntMap a
_) IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1

    go t1' :: IntMap a
t1'@(Tip Key
k1' a
_) IntMap b
t2' = IntMap a -> Key -> IntMap b -> IntMap c
merge0 IntMap a
t1' Key
k1' IntMap b
t2'
      where
        merge0 :: IntMap a -> Key -> IntMap b -> IntMap c
merge0 IntMap a
t1 Key
k1 t2 :: IntMap b
t2@(Bin Key
p2 Key
m2 IntMap b
l2 IntMap b
r2)
          | Key -> Key -> Key -> Bool
nomatch Key
k1 Key
p2 Key
m2 = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
          | Key -> Key -> Bool
zero Key
k1 Key
m2 = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p2 Key
m2 (IntMap a -> Key -> IntMap b -> IntMap c
merge0 IntMap a
t1 Key
k1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
          | Bool
otherwise  = Key -> Key -> IntMap c -> IntMap c -> IntMap c
bin' Key
p2 Key
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> Key -> IntMap b -> IntMap c
merge0 IntMap a
t1 Key
k1 IntMap b
r2)
        merge0 IntMap a
t1 Key
k1 t2 :: IntMap b
t2@(Tip Key
k2 b
_)
          | Key
k1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
          | Bool
otherwise = Key -> IntMap c -> Key -> IntMap c -> IntMap c
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Key
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
        merge0 IntMap a
t1 Key
_  IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1

    go IntMap a
Nil IntMap b
t2 = IntMap b -> IntMap c
g2 IntMap b
t2

    maybe_link :: Key -> IntMap a -> Key -> IntMap a -> IntMap a
maybe_link Key
_ IntMap a
Nil Key
_ IntMap a
t2 = IntMap a
t2
    maybe_link Key
_ IntMap a
t1 Key
_ IntMap a
Nil = IntMap a
t1
    maybe_link Key
p1 IntMap a
t1 Key
p2 IntMap a
t2 = Key -> IntMap a -> Key -> IntMap a -> IntMap a
forall a. Key -> IntMap a -> Key -> IntMap a -> IntMap a
link Key
p1 IntMap a
t1 Key
p2 IntMap a
t2
    {-# INLINE maybe_link #-}
{-# INLINE mergeWithKey' #-}


{--------------------------------------------------------------------
  mergeA
--------------------------------------------------------------------}

-- | A tactic for dealing with keys present in one map but not the
-- other in 'merge' or 'mergeA'.
--
-- A tactic of type @WhenMissing f k x z@ is an abstract representation
-- of a function of type @Key -> x -> f (Maybe z)@.
--
-- @since 0.5.9

data WhenMissing f x y = WhenMissing
  { WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree :: IntMap x -> f (IntMap y)
  , WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey :: Key -> x -> f (Maybe y)}

-- | @since 0.5.9
instance (Applicative f, Monad f) => Functor (WhenMissing f x) where
  fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b
fmap = (a -> b) -> WhenMissing f x a -> WhenMissing f x b
forall (f :: * -> *) a b x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing
  {-# INLINE fmap #-}


-- | @since 0.5.9
instance (Applicative f, Monad f) => Category.Category (WhenMissing f)
  where
    id :: WhenMissing f a a
id = WhenMissing f a a
forall (f :: * -> *) x. Applicative f => WhenMissing f x x
preserveMissing
    WhenMissing f b c
f . :: WhenMissing f b c -> WhenMissing f a b -> WhenMissing f a c
. WhenMissing f a b
g =
      (Key -> a -> f (Maybe c)) -> WhenMissing f a c
forall (f :: * -> *) x y.
Applicative f =>
(Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Key -> a -> f (Maybe c)) -> WhenMissing f a c)
-> (Key -> a -> f (Maybe c)) -> WhenMissing f a c
forall a b. (a -> b) -> a -> b
$ \ Key
k a
x -> do
        Maybe b
y <- WhenMissing f a b -> Key -> a -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f a b
g Key
k a
x
        case Maybe b
y of
          Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
          Just b
q  -> WhenMissing f b c -> Key -> b -> f (Maybe c)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f b c
f Key
k b
q
    {-# INLINE id #-}
    {-# INLINE (.) #-}


-- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Applicative (WhenMissing f x) where
  pure :: a -> WhenMissing f x a
pure a
x = (Key -> x -> a) -> WhenMissing f x a
forall (f :: * -> *) x y.
Applicative f =>
(Key -> x -> y) -> WhenMissing f x y
mapMissing (\ Key
_ x
_ -> a
x)
  WhenMissing f x (a -> b)
f <*> :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b
<*> WhenMissing f x a
g =
    (Key -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Key -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Key -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x -> do
      Maybe (a -> b)
res1 <- WhenMissing f x (a -> b) -> Key -> x -> f (Maybe (a -> b))
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x (a -> b)
f Key
k x
x
      case Maybe (a -> b)
res1 of
        Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a -> b
r  -> (Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMissing f x a -> Key -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x a
g Key
k x
x
  {-# INLINE pure #-}
  {-# INLINE (<*>) #-}


-- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Monad (WhenMissing f x) where
#if !MIN_VERSION_base(4,8,0)
  return = pure
#endif
  WhenMissing f x a
m >>= :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b
>>= a -> WhenMissing f x b
f =
    (Key -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Key -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Key -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x -> do
      Maybe a
res1 <- WhenMissing f x a -> Key -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x a
m Key
k x
x
      case Maybe a
res1 of
        Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a
r  -> WhenMissing f x b -> Key -> x -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey (a -> WhenMissing f x b
f a
r) Key
k x
x
  {-# INLINE (>>=) #-}


-- | Map covariantly over a @'WhenMissing' f x@.
--
-- @since 0.5.9
mapWhenMissing
  :: (Applicative f, Monad f)
  => (a -> b)
  -> WhenMissing f x a
  -> WhenMissing f x b
mapWhenMissing :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m f (IntMap a) -> (IntMap a -> f (IntMap b)) -> f (IntMap b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \IntMap a
m' -> IntMap b -> f (IntMap b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap b -> f (IntMap b)) -> IntMap b -> f (IntMap b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f IntMap a
m'
  , missingKey :: Key -> x -> f (Maybe b)
missingKey     = \Key
k x
x -> WhenMissing f x a -> Key -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Key
k x
x f (Maybe a) -> (Maybe a -> f (Maybe b)) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
q -> (Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
q) }
{-# INLINE mapWhenMissing #-}


-- | Map covariantly over a @'WhenMissing' f x@, using only a
-- 'Functor f' constraint.
mapGentlyWhenMissing
  :: Functor f
  => (a -> b)
  -> WhenMissing f x a
  -> WhenMissing f x b
mapGentlyWhenMissing :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapGentlyWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (IntMap a -> IntMap b) -> f (IntMap a) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m
  , missingKey :: Key -> x -> f (Maybe b)
missingKey     = \Key
k x
x -> (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> Key -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Key
k x
x }
{-# INLINE mapGentlyWhenMissing #-}


-- | Map covariantly over a @'WhenMatched' f k x@, using only a
-- 'Functor f' constraint.
mapGentlyWhenMatched
  :: Functor f
  => (a -> b)
  -> WhenMatched f x y a
  -> WhenMatched f x y b
mapGentlyWhenMatched :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapGentlyWhenMatched a -> b
f WhenMatched f x y a
t =
  (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x y
y -> (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMatched f x y a -> Key -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
t Key
k x
x y
y
{-# INLINE mapGentlyWhenMatched #-}


-- | Map contravariantly over a @'WhenMissing' f _ x@.
--
-- @since 0.5.9
lmapWhenMissing :: (b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing :: (b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing b -> a
f WhenMissing f a x
t = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap b -> f (IntMap x)
missingSubtree = \IntMap b
m -> WhenMissing f a x -> IntMap a -> f (IntMap x)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f a x
t ((b -> a) -> IntMap b -> IntMap a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f IntMap b
m)
  , missingKey :: Key -> b -> f (Maybe x)
missingKey     = \Key
k b
x -> WhenMissing f a x -> Key -> a -> f (Maybe x)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f a x
t Key
k (b -> a
f b
x) }
{-# INLINE lmapWhenMissing #-}


-- | Map contravariantly over a @'WhenMatched' f _ y z@.
--
-- @since 0.5.9
contramapFirstWhenMatched
  :: (b -> a)
  -> WhenMatched f a y z
  -> WhenMatched f b y z
contramapFirstWhenMatched :: (b -> a) -> WhenMatched f a y z -> WhenMatched f b y z
contramapFirstWhenMatched b -> a
f WhenMatched f a y z
t =
  (Key -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> b -> y -> f (Maybe z)) -> WhenMatched f b y z)
-> (Key -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall a b. (a -> b) -> a -> b
$ \Key
k b
x y
y -> WhenMatched f a y z -> Key -> a -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f a y z
t Key
k (b -> a
f b
x) y
y
{-# INLINE contramapFirstWhenMatched #-}


-- | Map contravariantly over a @'WhenMatched' f x _ z@.
--
-- @since 0.5.9
contramapSecondWhenMatched
  :: (b -> a)
  -> WhenMatched f x a z
  -> WhenMatched f x b z
contramapSecondWhenMatched :: (b -> a) -> WhenMatched f x a z -> WhenMatched f x b z
contramapSecondWhenMatched b -> a
f WhenMatched f x a z
t =
  (Key -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> b -> f (Maybe z)) -> WhenMatched f x b z)
-> (Key -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall a b. (a -> b) -> a -> b
$ \Key
k x
x b
y -> WhenMatched f x a z -> Key -> x -> a -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a z
t Key
k x
x (b -> a
f b
y)
{-# INLINE contramapSecondWhenMatched #-}


#if !MIN_VERSION_base(4,8,0)
newtype Identity a = Identity {runIdentity :: a}

instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

instance Applicative Identity where
    pure = Identity
    Identity f <*> Identity x = Identity (f x)
#endif

-- | A tactic for dealing with keys present in one map but not the
-- other in 'merge'.
--
-- A tactic of type @SimpleWhenMissing x z@ is an abstract
-- representation of a function of type @Key -> x -> Maybe z@.
--
-- @since 0.5.9
type SimpleWhenMissing = WhenMissing Identity


-- | A tactic for dealing with keys present in both maps in 'merge'
-- or 'mergeA'.
--
-- A tactic of type @WhenMatched f x y z@ is an abstract representation
-- of a function of type @Key -> x -> y -> f (Maybe z)@.
--
-- @since 0.5.9
newtype WhenMatched f x y z = WhenMatched
  { WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
matchedKey :: Key -> x -> y -> f (Maybe z) }


-- | Along with zipWithMaybeAMatched, witnesses the isomorphism
-- between @WhenMatched f x y z@ and @Key -> x -> y -> f (Maybe z)@.
--
-- @since 0.5.9
runWhenMatched :: WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched :: WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched = WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
matchedKey
{-# INLINE runWhenMatched #-}


-- | Along with traverseMaybeMissing, witnesses the isomorphism
-- between @WhenMissing f x y@ and @Key -> x -> f (Maybe y)@.
--
-- @since 0.5.9
runWhenMissing :: WhenMissing f x y -> Key-> x -> f (Maybe y)
runWhenMissing :: WhenMissing f x y -> Key -> x -> f (Maybe y)
runWhenMissing = WhenMissing f x y -> Key -> x -> f (Maybe y)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey
{-# INLINE runWhenMissing #-}


-- | @since 0.5.9
instance Functor f => Functor (WhenMatched f x y) where
  fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
fmap = (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched
  {-# INLINE fmap #-}


-- | @since 0.5.9
instance (Monad f, Applicative f) => Category.Category (WhenMatched f x)
  where
    id :: WhenMatched f x a a
id = (Key -> x -> a -> a) -> WhenMatched f x a a
forall (f :: * -> *) x y z.
Applicative f =>
(Key -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Key
_ x
_ a
y -> a
y)
    WhenMatched f x b c
f . :: WhenMatched f x b c -> WhenMatched f x a b -> WhenMatched f x a c
. WhenMatched f x a b
g =
      (Key -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall x y (f :: * -> *) z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Key -> x -> a -> f (Maybe c)) -> WhenMatched f x a c)
-> (Key -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall a b. (a -> b) -> a -> b
$ \Key
k x
x a
y -> do
        Maybe b
res <- WhenMatched f x a b -> Key -> x -> a -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a b
g Key
k x
x a
y
        case Maybe b
res of
          Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
          Just b
r  -> WhenMatched f x b c -> Key -> x -> b -> f (Maybe c)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x b c
f Key
k x
x b
r
    {-# INLINE id #-}
    {-# INLINE (.) #-}


-- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@
--
-- @since 0.5.9
instance (Monad f, Applicative f) => Applicative (WhenMatched f x y) where
  pure :: a -> WhenMatched f x y a
pure a
x = (Key -> x -> y -> a) -> WhenMatched f x y a
forall (f :: * -> *) x y z.
Applicative f =>
(Key -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Key
_ x
_ y
_ -> a
x)
  WhenMatched f x y (a -> b)
fs <*> :: WhenMatched f x y (a -> b)
-> WhenMatched f x y a -> WhenMatched f x y b
<*> WhenMatched f x y a
xs =
    (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x y
y -> do
      Maybe (a -> b)
res <- WhenMatched f x y (a -> b) -> Key -> x -> y -> f (Maybe (a -> b))
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y (a -> b)
fs Key
k x
x y
y
      case Maybe (a -> b)
res of
        Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a -> b
r  -> (Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMatched f x y a -> Key -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
xs Key
k x
x y
y
  {-# INLINE pure #-}
  {-# INLINE (<*>) #-}


-- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@
--
-- @since 0.5.9
instance (Monad f, Applicative f) => Monad (WhenMatched f x y) where
#if !MIN_VERSION_base(4,8,0)
  return = pure
#endif
  WhenMatched f x y a
m >>= :: WhenMatched f x y a
-> (a -> WhenMatched f x y b) -> WhenMatched f x y b
>>= a -> WhenMatched f x y b
f =
    (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x y
y -> do
      Maybe a
res <- WhenMatched f x y a -> Key -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
m Key
k x
x y
y
      case Maybe a
res of
        Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a
r  -> WhenMatched f x y b -> Key -> x -> y -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched (a -> WhenMatched f x y b
f a
r) Key
k x
x y
y
  {-# INLINE (>>=) #-}


-- | Map covariantly over a @'WhenMatched' f x y@.
--
-- @since 0.5.9
mapWhenMatched
  :: Functor f
  => (a -> b)
  -> WhenMatched f x y a
  -> WhenMatched f x y b
mapWhenMatched :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched a -> b
f (WhenMatched Key -> x -> y -> f (Maybe a)
g) =
  (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Key -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Key
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (Key -> x -> y -> f (Maybe a)
g Key
k x
x y
y)
{-# INLINE mapWhenMatched #-}


-- | A tactic for dealing with keys present in both maps in 'merge'.
--
-- A tactic of type @SimpleWhenMatched x y z@ is an abstract
-- representation of a function of type @Key -> x -> y -> Maybe z@.
--
-- @since 0.5.9
type SimpleWhenMatched = WhenMatched Identity


-- | When a key is found in both maps, apply a function to the key
-- and values and use the result in the merged map.
--
-- > zipWithMatched
-- >   :: (Key -> x -> y -> z)
-- >   -> SimpleWhenMatched x y z
--
-- @since 0.5.9
zipWithMatched
  :: Applicative f
  => (Key -> x -> y -> z)
  -> WhenMatched f x y z
zipWithMatched :: (Key -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched Key -> x -> y -> z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Key
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> (z -> Maybe z) -> z -> f (Maybe z)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. z -> Maybe z
forall a. a -> Maybe a
Just (z -> f (Maybe z)) -> z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Key -> x -> y -> z
f Key
k x
x y
y
{-# INLINE zipWithMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values to produce an action and use its result in the merged
-- map.
--
-- @since 0.5.9
zipWithAMatched
  :: Applicative f
  => (Key -> x -> y -> f z)
  -> WhenMatched f x y z
zipWithAMatched :: (Key -> x -> y -> f z) -> WhenMatched f x y z
zipWithAMatched Key -> x -> y -> f z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Key
k x
x y
y -> z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> y -> f z
f Key
k x
x y
y
{-# INLINE zipWithAMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values and maybe use the result in the merged map.
--
-- > zipWithMaybeMatched
-- >   :: (Key -> x -> y -> Maybe z)
-- >   -> SimpleWhenMatched x y z
--
-- @since 0.5.9
zipWithMaybeMatched
  :: Applicative f
  => (Key -> x -> y -> Maybe z)
  -> WhenMatched f x y z
zipWithMaybeMatched :: (Key -> x -> y -> Maybe z) -> WhenMatched f x y z
zipWithMaybeMatched Key -> x -> y -> Maybe z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Key
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Key -> x -> y -> Maybe z
f Key
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values, perform the resulting action, and maybe use the
-- result in the merged map.
--
-- This is the fundamental 'WhenMatched' tactic.
--
-- @since 0.5.9
zipWithMaybeAMatched
  :: (Key -> x -> y -> f (Maybe z))
  -> WhenMatched f x y z
zipWithMaybeAMatched :: (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched Key -> x -> y -> f (Maybe z)
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Key
k x
x y
y -> Key -> x -> y -> f (Maybe z)
f Key
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}


-- | Drop all the entries whose keys are missing from the other
-- map.
--
-- > dropMissing :: SimpleWhenMissing x y
--
-- prop> dropMissing = mapMaybeMissing (\_ _ -> Nothing)
--
-- but @dropMissing@ is much faster.
--
-- @since 0.5.9
dropMissing :: Applicative f => WhenMissing f x y
dropMissing :: WhenMissing f x y
dropMissing = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = f (IntMap y) -> IntMap x -> f (IntMap y)
forall a b. a -> b -> a
const (IntMap y -> f (IntMap y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap y
forall a. IntMap a
Nil)
  , missingKey :: Key -> x -> f (Maybe y)
missingKey     = \Key
_ x
_ -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe y
forall a. Maybe a
Nothing }
{-# INLINE dropMissing #-}


-- | Preserve, unchanged, the entries whose keys are missing from
-- the other map.
--
-- > preserveMissing :: SimpleWhenMissing x x
--
-- prop> preserveMissing = Merge.Lazy.mapMaybeMissing (\_ x -> Just x)
--
-- but @preserveMissing@ is much faster.
--
-- @since 0.5.9
preserveMissing :: Applicative f => WhenMissing f x x
preserveMissing :: WhenMissing f x x
preserveMissing = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = IntMap x -> f (IntMap x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure
  , missingKey :: Key -> x -> f (Maybe x)
missingKey     = \Key
_ x
v -> Maybe x -> f (Maybe x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (x -> Maybe x
forall a. a -> Maybe a
Just x
v) }
{-# INLINE preserveMissing #-}


-- | Map over the entries whose keys are missing from the other map.
--
-- > mapMissing :: (k -> x -> y) -> SimpleWhenMissing x y
--
-- prop> mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
--
-- but @mapMissing@ is somewhat faster.
--
-- @since 0.5.9
mapMissing :: Applicative f => (Key -> x -> y) -> WhenMissing f x y
mapMissing :: (Key -> x -> y) -> WhenMissing f x y
mapMissing Key -> x -> y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Key -> x -> y) -> IntMap x -> IntMap y
forall a b. (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey Key -> x -> y
f IntMap x
m
  , missingKey :: Key -> x -> f (Maybe y)
missingKey     = \Key
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$ y -> Maybe y
forall a. a -> Maybe a
Just (Key -> x -> y
f Key
k x
x) }
{-# INLINE mapMissing #-}


-- | Map over the entries whose keys are missing from the other
-- map, optionally removing some. This is the most powerful
-- 'SimpleWhenMissing' tactic, but others are usually more efficient.
--
-- > mapMaybeMissing :: (Key -> x -> Maybe y) -> SimpleWhenMissing x y
--
-- prop> mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
--
-- but @mapMaybeMissing@ uses fewer unnecessary 'Applicative'
-- operations.
--
-- @since 0.5.9
mapMaybeMissing
  :: Applicative f => (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing :: (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing Key -> x -> Maybe y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Key -> x -> Maybe y) -> IntMap x -> IntMap y
forall a b. (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Key -> x -> Maybe y
f IntMap x
m
  , missingKey :: Key -> x -> f (Maybe y)
missingKey     = \Key
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! Key -> x -> Maybe y
f Key
k x
x }
{-# INLINE mapMaybeMissing #-}


-- | Filter the entries whose keys are missing from the other map.
--
-- > filterMissing :: (k -> x -> Bool) -> SimpleWhenMissing x x
--
-- prop> filterMissing f = Merge.Lazy.mapMaybeMissing $ \k x -> guard (f k x) *> Just x
--
-- but this should be a little faster.
--
-- @since 0.5.9
filterMissing
  :: Applicative f => (Key -> x -> Bool) -> WhenMissing f x x
filterMissing :: (Key -> x -> Bool) -> WhenMissing f x x
filterMissing Key -> x -> Bool
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> IntMap x -> f (IntMap x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap x -> f (IntMap x)) -> IntMap x -> f (IntMap x)
forall a b. (a -> b) -> a -> b
$! (Key -> x -> Bool) -> IntMap x -> IntMap x
forall a. (Key -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey Key -> x -> Bool
f IntMap x
m
  , missingKey :: Key -> x -> f (Maybe x)
missingKey     = \Key
k x
x -> Maybe x -> f (Maybe x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe x -> f (Maybe x)) -> Maybe x -> f (Maybe x)
forall a b. (a -> b) -> a -> b
$! if Key -> x -> Bool
f Key
k x
x then x -> Maybe x
forall a. a -> Maybe a
Just x
x else Maybe x
forall a. Maybe a
Nothing }
{-# INLINE filterMissing #-}


-- | Filter the entries whose keys are missing from the other map
-- using some 'Applicative' action.
--
-- > filterAMissing f = Merge.Lazy.traverseMaybeMissing $
-- >   \k x -> (\b -> guard b *> Just x) <$> f k x
--
-- but this should be a little faster.
--
-- @since 0.5.9
filterAMissing
  :: Applicative f => (Key -> x -> f Bool) -> WhenMissing f x x
filterAMissing :: (Key -> x -> f Bool) -> WhenMissing f x x
filterAMissing Key -> x -> f Bool
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> (Key -> x -> f Bool) -> IntMap x -> f (IntMap x)
forall (f :: * -> *) a.
Applicative f =>
(Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> x -> f Bool
f IntMap x
m
  , missingKey :: Key -> x -> f (Maybe x)
missingKey     = \Key
k x
x -> Maybe x -> Maybe x -> Bool -> Maybe x
forall a. a -> a -> Bool -> a
bool Maybe x
forall a. Maybe a
Nothing (x -> Maybe x
forall a. a -> Maybe a
Just x
x) (Bool -> Maybe x) -> f Bool -> f (Maybe x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> f Bool
f Key
k x
x }
{-# INLINE filterAMissing #-}


-- | /O(n)/. Filter keys and values using an 'Applicative' predicate.
filterWithKeyA
  :: Applicative f => (Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA :: (Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> a -> f Bool
_ IntMap a
Nil           = IntMap a -> f (IntMap a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap a
forall a. IntMap a
Nil
filterWithKeyA Key -> a -> f Bool
f t :: IntMap a
t@(Tip Key
k a
x)   = (\Bool
b -> if Bool
b then IntMap a
t else IntMap a
forall a. IntMap a
Nil) (Bool -> IntMap a) -> f Bool -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> a -> f Bool
f Key
k a
x
filterWithKeyA Key -> a -> f Bool
f (Bin Key
p Key
m IntMap a
l IntMap a
r)
  | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m)) ((Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> a -> f Bool
f IntMap a
r) ((Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> a -> f Bool
f IntMap a
l)
  | Bool
otherwise = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Key -> Key -> IntMap a -> IntMap a -> IntMap a
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m) ((Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> a -> f Bool
f IntMap a
l) ((Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Key -> a -> f Bool
f IntMap a
r)

-- | This wasn't in Data.Bool until 4.7.0, so we define it here
bool :: a -> a -> Bool -> a
bool :: a -> a -> Bool -> a
bool a
f a
_ Bool
False = a
f
bool a
_ a
t Bool
True  = a
t


-- | Traverse over the entries whose keys are missing from the other
-- map.
--
-- @since 0.5.9
traverseMissing
  :: Applicative f => (Key -> x -> f y) -> WhenMissing f x y
traverseMissing :: (Key -> x -> f y) -> WhenMissing f x y
traverseMissing Key -> x -> f y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Key -> x -> f y) -> IntMap x -> f (IntMap y)
forall (t :: * -> *) a b.
Applicative t =>
(Key -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey Key -> x -> f y
f
  , missingKey :: Key -> x -> f (Maybe y)
missingKey = \Key
k x
x -> y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> f y
f Key
k x
x }
{-# INLINE traverseMissing #-}


-- | Traverse over the entries whose keys are missing from the other
-- map, optionally producing values to put in the result. This is
-- the most powerful 'WhenMissing' tactic, but others are usually
-- more efficient.
--
-- @since 0.5.9
traverseMaybeMissing
  :: Applicative f => (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing :: (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing Key -> x -> f (Maybe y)
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Key -> x -> f (Maybe y)) -> IntMap x -> f (IntMap y)
forall (f :: * -> *) a b.
Applicative f =>
(Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Key -> x -> f (Maybe y)
f
  , missingKey :: Key -> x -> f (Maybe y)
missingKey = Key -> x -> f (Maybe y)
f }
{-# INLINE traverseMaybeMissing #-}


-- | /O(n)/. Traverse keys\/values and collect the 'Just' results.
--
-- @since 0.6.4
traverseMaybeWithKey
  :: Applicative f => (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey :: (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Key -> a -> f (Maybe b)
f = IntMap a -> f (IntMap b)
go
    where
    go :: IntMap a -> f (IntMap b)
go IntMap a
Nil           = IntMap b -> f (IntMap b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap b
forall a. IntMap a
Nil
    go (Tip Key
k a
x)     = IntMap b -> (b -> IntMap b) -> Maybe b -> IntMap b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap b
forall a. IntMap a
Nil (Key -> b -> IntMap b
forall a. Key -> a -> IntMap a
Tip Key
k) (Maybe b -> IntMap b) -> f (Maybe b) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> a -> f (Maybe b)
f Key
k a
x
    go (Bin Key
p Key
m IntMap a
l IntMap a
r)
      | Key
m Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0     = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap b -> IntMap b -> IntMap b)
-> IntMap b -> IntMap b -> IntMap b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key -> Key -> IntMap b -> IntMap b -> IntMap b
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m)) (IntMap a -> f (IntMap b)
go IntMap a
r) (IntMap a -> f (IntMap b)
go IntMap a
l)
      | Bool
otherwise = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Key -> Key -> IntMap b -> IntMap b -> IntMap b
forall a. Key -> Key -> IntMap a -> IntMap a -> IntMap a
bin Key
p Key
m) (IntMap a -> f (IntMap b)
go IntMap a
l) (IntMap a -> f (IntMap b)
go IntMap a
r)


-- | Merge two maps.
--
-- 'merge' takes two 'WhenMissing' tactics, a 'WhenMatched' tactic
-- and two maps. It uses the tactics to merge the maps. Its behavior
-- is best understood via its fundamental tactics, 'mapMaybeMissing'
-- and 'zipWithMaybeMatched'.
--
-- Consider
--
-- @
-- merge (mapMaybeMissing g1)
--              (mapMaybeMissing g2)
--              (zipWithMaybeMatched f)
--              m1 m2
-- @
--
-- Take, for example,
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'), (3, \'c\'), (4, \'d\')]
-- m2 = [(1, "one"), (2, "two"), (4, "three")]
-- @
--
-- 'merge' will first \"align\" these maps by key:
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'),               (3, \'c\'), (4, \'d\')]
-- m2 =           [(1, "one"), (2, "two"),           (4, "three")]
-- @
--
-- It will then pass the individual entries and pairs of entries
-- to @g1@, @g2@, or @f@ as appropriate:
--
-- @
-- maybes = [g1 0 \'a\', f 1 \'b\' "one", g2 2 "two", g1 3 \'c\', f 4 \'d\' "three"]
-- @
--
-- This produces a 'Maybe' for each key:
--
-- @
-- keys =     0        1          2           3        4
-- results = [Nothing, Just True, Just False, Nothing, Just True]
-- @
--
-- Finally, the @Just@ results are collected into a map:
--
-- @
-- return value = [(1, True), (2, False), (4, True)]
-- @
--
-- The other tactics below are optimizations or simplifications of
-- 'mapMaybeMissing' for special cases. Most importantly,
--
-- * 'dropMissing' drops all the keys.
-- * 'preserveMissing' leaves all the entries alone.
--
-- When 'merge' is given three arguments, it is inlined at the call
-- site. To prevent excessive inlining, you should typically use
-- 'merge' to define your custom combining functions.
--
--
-- Examples:
--
-- prop> unionWithKey f = merge preserveMissing preserveMissing (zipWithMatched f)
-- prop> intersectionWithKey f = merge dropMissing dropMissing (zipWithMatched f)
-- prop> differenceWith f = merge diffPreserve diffDrop f
-- prop> symmetricDifference = merge diffPreserve diffPreserve (\ _ _ _ -> Nothing)
-- prop> mapEachPiece f g h = merge (diffMapWithKey f) (diffMapWithKey g)
--
-- @since 0.5.9
merge
  :: SimpleWhenMissing a c -- ^ What to do with keys in @m1@ but not @m2@
  -> SimpleWhenMissing b c -- ^ What to do with keys in @m2@ but not @m1@
  -> SimpleWhenMatched a b c -- ^ What to do with keys in both @m1@ and @m2@
  -> IntMap a -- ^ Map @m1@
  -> IntMap b -- ^ Map @m2@
  -> IntMap c
merge :: SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> IntMap c
merge SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2 =
  Identity (IntMap c) -> IntMap c
forall a. Identity a -> a
runIdentity (Identity (IntMap c) -> IntMap c)
-> Identity (IntMap c) -> IntMap c
forall a b. (a -> b) -> a -> b
$ SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> Identity (IntMap c)
forall (f :: * -> *) a c b.
Applicative f =>
WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2
{-# INLINE merge #-}


-- | An applicative version of 'merge'.
--
-- 'mergeA' takes two 'WhenMissing' tactics, a 'WhenMatched'
-- tactic and two maps. It uses the tactics to merge the maps.
-- Its behavior is best understood via its fundamental tactics,
-- 'traverseMaybeMissing' and 'zipWithMaybeAMatched'.
--
-- Consider
--
-- @
-- mergeA (traverseMaybeMissing g1)
--               (traverseMaybeMissing g2)
--               (zipWithMaybeAMatched f)
--               m1 m2
-- @
--
-- Take, for example,
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'), (3,\'c\'), (4, \'d\')]
-- m2 = [(1, "one"), (2, "two"), (4, "three")]
-- @
--
-- 'mergeA' will first \"align\" these maps by key:
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'),               (3, \'c\'), (4, \'d\')]
-- m2 =           [(1, "one"), (2, "two"),           (4, "three")]
-- @
--
-- It will then pass the individual entries and pairs of entries
-- to @g1@, @g2@, or @f@ as appropriate:
--
-- @
-- actions = [g1 0 \'a\', f 1 \'b\' "one", g2 2 "two", g1 3 \'c\', f 4 \'d\' "three"]
-- @
--
-- Next, it will perform the actions in the @actions@ list in order from
-- left to right.
--
-- @
-- keys =     0        1          2           3        4
-- results = [Nothing, Just True, Just False, Nothing, Just True]
-- @
--
-- Finally, the @Just@ results are collected into a map:
--
-- @
-- return value = [(1, True), (2, False), (4, True)]
-- @
--
-- The other tactics below are optimizations or simplifications of
-- 'traverseMaybeMissing' for special cases. Most importantly,
--
-- * 'dropMissing' drops all the keys.
-- * 'preserveMissing' leaves all the entries alone.
-- * 'mapMaybeMissing' does not use the 'Applicative' context.
--
-- When 'mergeA' is given three arguments, it is inlined at the call
-- site. To prevent excessive inlining, you should generally only use
-- 'mergeA' to define custom combining functions.
--
-- @since 0.5.9
mergeA
  :: (Applicative f)
  => WhenMissing f a c -- ^ What to do with keys in @m1@ but not @m2@
  -> WhenMissing f b c -- ^ What to do with keys in @m2@ but not @m1@
  -> WhenMatched f a b c -- ^ What to do with keys in both @m1@ and @m2@
  -> IntMap a -- ^ Map @m1@
  -> IntMap b -- ^ Map @m2@
  -> f (IntMap c)
mergeA :: WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA
    WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap a -> f (IntMap c)
g1t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey = Key -> a -> f (Maybe c)
g1k}
    WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap b -> f (IntMap c)
g2t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey = Key -> b -> f (Maybe c)
g2k}
    WhenMatched{matchedKey :: forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
matchedKey = Key -> a -> b -> f (Maybe c)
f}
    = IntMap a -> IntMap b -> f (IntMap c)
go
  where
    go :: IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
t1  IntMap b
Nil = IntMap a -> f (IntMap c)
g1t IntMap a
t1
    go IntMap a
Nil IntMap b
t2  = IntMap b -> f (IntMap c)
g2t IntMap b
t2

    -- This case is already covered below.
    -- go (Tip k1 x1) (Tip k2 x2) = mergeTips k1 x1 k2 x2

    go (Tip Key
k1 a
x1) IntMap b
t2' = IntMap b -> f (IntMap c)
merge2 IntMap b
t2'
      where
        merge2 :: IntMap b -> f (IntMap c)
merge2 t2 :: IntMap b
t2@(Bin Key
p2 Key
m2 IntMap b
l2 IntMap b
r2)
          | Key -> Key -> Key -> Bool
nomatch Key
k1 Key
p2 Key
m2 = Key -> f (IntMap c) -> Key -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> f (IntMap a) -> Key -> f (IntMap a) -> f (IntMap a)
linkA Key
k1 ((Key -> a -> f (Maybe c)) -> Key -> a -> f (IntMap c)
forall (f :: * -> *) t a.
Functor f =>
(Key -> t -> f (Maybe a)) -> Key -> t -> f (IntMap a)
subsingletonBy Key -> a -> f (Maybe c)
g1k Key
k1 a
x1) Key
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
          | Key -> Key -> Bool
zero Key
k1 Key
m2       = Key -> Key -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> Key -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Key
p2 Key
m2 (IntMap b -> f (IntMap c)
merge2 IntMap b
l2) (IntMap b -> f (IntMap c)
g2t IntMap b
r2)
          | Bool
otherwise        = Key -> Key -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> Key -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Key
p2 Key
m2 (IntMap b -> f (IntMap c)
g2t IntMap b
l2) (IntMap b -> f (IntMap c)
merge2 IntMap b
r2)
        merge2 (Tip Key
k2 b
x2)   = Key -> a -> Key -> b -> f (IntMap c)
mergeTips Key
k1 a
x1 Key
k2 b
x2
        merge2 IntMap b
Nil           = (Key -> a -> f (Maybe c)) -> Key -> a -> f (IntMap c)
forall (f :: * -> *) t a.
Functor f =>
(Key -> t -> f (Maybe a)) -> Key -> t -> f (IntMap a)
subsingletonBy Key -> a -> f (Maybe c)
g1k Key
k1 a
x1

    go IntMap a
t1' (Tip Key
k2 b
x2) = IntMap a -> f (IntMap c)
merge1 IntMap a
t1'
      where
        merge1 :: IntMap a -> f (IntMap c)
merge1 t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1)
          | Key -> Key -> Key -> Bool
nomatch Key
k2 Key
p1 Key
m1 = Key -> f (IntMap c) -> Key -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> f (IntMap a) -> Key -> f (IntMap a) -> f (IntMap a)
linkA Key
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Key
k2 ((Key -> b -> f (Maybe c)) -> Key -> b -> f (IntMap c)
forall (f :: * -> *) t a.
Functor f =>
(Key -> t -> f (Maybe a)) -> Key -> t -> f (IntMap a)
subsingletonBy Key -> b -> f (Maybe c)
g2k Key
k2 b
x2)
          | Key -> Key -> Bool
zero Key
k2 Key
m1       = Key -> Key -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> Key -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Key
p1 Key
m1 (IntMap a -> f (IntMap c)
merge1 IntMap a
l1) (IntMap a -> f (IntMap c)
g1t IntMap a
r1)
          | Bool
otherwise        = Key -> Key -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> Key -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Key
p1 Key
m1 (IntMap a -> f (IntMap c)
g1t IntMap a
l1) (IntMap a -> f (IntMap c)
merge1 IntMap a
r1)
        merge1 (Tip Key
k1 a
x1)   = Key -> a -> Key -> b -> f (IntMap c)
mergeTips Key
k1 a
x1 Key
k2 b
x2
        merge1 IntMap a
Nil           = (Key -> b -> f (Maybe c)) -> Key -> b -> f (IntMap c)
forall (f :: * -> *) t a.
Functor f =>
(Key -> t -> f (Maybe a)) -> Key -> t -> f (IntMap a)
subsingletonBy Key -> b -> f (Maybe c)
g2k Key
k2 b
x2

    go t1 :: IntMap a
t1@(Bin Key
p1 Key
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Key
p2 Key
m2 IntMap b
l2 IntMap b
r2)
      | Key -> Key -> Bool
shorter Key
m1 Key
m2  = f (IntMap c)
merge1
      | Key -> Key -> Bool
shorter Key
m2 Key
m1  = f (IntMap c)
merge2
      | Key
p1 Key -> Key -> Bool
forall a. Eq a => a -> a -> Bool
== Key
p2       = Key -> Key -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Key -> Key -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Key
p1 Key
m1 (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
r1 IntMap b
r2)
      | Bool
otherwise      = Key -> f (IntMap