control-monad-exception-0.11.2: Explicitly typed, checked exceptions with stack traces

Safe HaskellNone
LanguageHaskell98

Control.Monad.Exception.Pure

Contents

Description

A Monad Transformer for explicitly typed checked exceptions, described in detail by:

The exceptions thrown by a computation are inferred by the typechecker and appear in the type signature of the computation as Throws constraints.

Exceptions are defined using the extensible exceptions framework of Marlow (documented in Control.Exception):

  • An Extensible Dynamically-Typed Hierarchy of Exceptions, by Simon Marlow, in Haskell '06.

Example

data DivideByZero = DivideByZero deriving (Show, Typeable)
data SumOverflow  = SumOverflow  deriving (Show, Typeable)
instance Exception DivideByZero
instance Exception SumOverflow
data Expr = Add Expr Expr | Div Expr Expr | Val Double
eval (Val x)     = return x
eval (Add a1 a2) = do
   v1 <- eval a1
   v2 <- eval a2
   let sum = v1 + v2
   if sum < v1 || sum < v2 then throw SumOverflow else return sum
eval (Div a1 a2) = do
   v1 <- eval a1
   v2 <- eval a2
   if v2 == 0 then throw DivideByZero else return (v1 / v2)

GHCi infers the following types

eval                                             :: (Throws DivideByZero l, Throws SumOverflow l) => Expr -> EM l Double
eval `catch` \ (e::DivideByZero) -> return (-1)  :: Throws SumOverflow l => Expr -> EM l Double
runEM(eval `catch` \ (e::SomeException) -> return (-1))
                                                 :: Expr -> Double

Synopsis

Important trivia

Hierarchies of Exceptions

If your exceptions are hierarchical then you need to teach Throws about the hierarchy. See the documentation of Throws for more info.

Unchecked exceptions

Unchecked exceptions

An exception E can be declared as unchecked by making E an instance of UncaughtException.

instance UncaughtException E

E will still appear in the list of exceptions thrown by a computation but runEMT will not complain if E escapes the computation being run.

Also, tryEMT allows you to run a computation regardless of the exceptions it throws.

Stack Traces

Stack traces are provided via the MonadLoc package. All you need to do is add the following pragma at the top of your Haskell source files and use do-notation:

 { # OPTIONS_GHC -F -pgmF MonadLoc # }

Only statements in do blocks appear in the stack trace.

Example:

      f () = do throw MyException
      g a  = do f a

      main = runEMT $ do
               g () `catchWithSrcLoc`
                       \loc (e::MyException) -> lift(putStrLn$ showExceptionWithTrace loc e)
       -- Running main produces the output:
      *Main> main
      MyException
       in f, Main(example.hs): (1,6)
          g, Main(example.hs): (2,6)
          main, Main(example.hs): (5,9)
          main, Main(example.hs): (4,16)

Understanding GHC errors

A type error of the form:

   No instance for (UncaughtException MyException)
     arising from a use of `g' at examples/docatch.hs:21:32-35
   Possible fix:
     add an instance declaration for (UncaughtException MyException)
   In the expression: g ()

is the type checker saying:

"hey, you are trying to run a computation which throws a MyException without handling it, and I won't let you"

Either handle it or declare MyException as an UncaughtException.

A type error of the form:

   Overlapping instances for Throws MyException (Caught e NoExceptions)
     arising from a use of `g' at docatch.hs:24:3-6
   Matching instances:
     instance (Throws e l) => Throws e (Caught e' l)
       -- Defined at ../Control/Monad/Exception/Throws.hs:46:9-45
     instance (Exception e) => Throws e (Caught e l)
       -- Defined at ../Control/Monad/Exception/Throws.hs:47:9-44
   (The choice depends on the instantiation of `e'
   ...

is due to an exception handler for MyException missing a type annotation to pin down the type of the exception.

The EM monad

type EM l = EMT l Identity Source

A monad of explicitly typed, checked exceptions

tryEM :: EM AnyException a -> Either SomeException a Source

Run a computation explicitly handling exceptions

runEM :: EM NoExceptions a -> a Source

Run a safe computation

runEMParanoid :: EM ParanoidMode a -> a Source

Run a computation checking even unchecked (UncaughtExceptions) exceptions

The EMT monad transformer

newtype EMT l m a Source

A Monad Transformer for explicitly typed checked exceptions.

Constructors

EMT 

Fields

unEMT :: m (Either (CallTrace, CheckedException l) a)
 

Instances

(Exception e, Throws e l, Monad m) => Failure e (EMT l m) 
MonadBase b m => MonadBase b (EMT l m) 
MonadBaseControl b m => MonadBaseControl b (EMT l m) 
(Exception e, MonadBaseControl IO m) => MonadCatch e (EMT (Caught e l) m) (EMT l m) 
(Exception e, Monad m) => MonadCatch e (EMT (Caught e l) m) (EMT l m) 
Throws MonadZeroException l => Alternative (EM l) 
Throws MonadZeroException l => MonadPlus (EM l) 
MonadTrans (EMT l) 
MonadTransControl (EMT l) 
Monad m => Monad (EMT l m) 
Monad m => Functor (EMT l m) 
MonadFix m => MonadFix (EMT l m) 
Monad m => Applicative (EMT l m) 
Monad m => MonadLoc (EMT l m) 
MonadIO m => MonadIO (EMT l m) 
type StT (EMT l) a = Either (CallTrace, CheckedException l) a 
type StM (EMT l m) a = ComposeSt (EMT l) m a 

tryEMT :: Monad m => EMT AnyException m a -> m (Either SomeException a) Source

Run a computation explicitly handling exceptions

runEMT :: Monad m => EMT NoExceptions m a -> m a Source

Run a safe computation

runEMTParanoid :: Monad m => EMT ParanoidMode m a -> m a Source

Run a safe computation checking even unchecked (UncaughtException) exceptions

class Exception e => UncaughtException e Source

UncaughtException models unchecked exceptions

In order to declare an unchecked exception E, all that is needed is to make e an instance of UncaughtException

instance UncaughtException E

Note that declaring an exception E as unchecked does not automatically turn its children unchecked too. This is a shortcoming of the current encoding.

The Throws type class

class Exception e => Throws e l Source

Throws is a type level binary relationship used to model a list of exceptions.

There is only one case in which the user must add further instances to Throws. If your sets of exceptions are hierarchical then you need to teach Throws about the hierarchy.

Subtyping
As there is no way to automatically infer the subcases of an exception, they have to be encoded manually mirroring the hierarchy defined in the defined Exception instances. For example, the following instance encodes that MyFileNotFoundException is a subexception of MyIOException :
instance Throws MyFileNotFoundException (Caught MyIOException l)

Throws is not a transitive relation and every ancestor relation must be explicitly encoded.

                                                           --   TopException
                                                           --         |
  instance Throws MidException   (Caught TopException l)   --         |
                                                           --   MidException
  instance Throws ChildException (Caught MidException l)   --         |
  instance Throws ChildException (Caught TopException l)   --         |
                                                           --  ChildException

Note that SomeException is automatically an ancestor of every other exception type.

Instances

UncaughtException e => Throws e NoExceptions 
Exception e => Throws e AnyException 
Exception e => Throws e (Caught SomeException l)

SomeException is at the top of the exception hierarchy . Capturing SomeException captures every possible exception

Exception e => Throws e (Caught e l) 
Throws e l => Throws e (Caught e' l) 
Throws SomeException (Caught SomeException l) 

data Caught e l Source

A type level witness of a exception handler.

Instances

Exception e => Throws e (Caught SomeException l)

SomeException is at the top of the exception hierarchy . Capturing SomeException captures every possible exception

Exception e => Throws e (Caught e l) 
Throws e l => Throws e (Caught e' l) 
Throws SomeException (Caught SomeException l) 
(Exception e, MonadBaseControl IO m) => MonadCatch e (EMT (Caught e l) m) (EMT l m) 
(Exception e, Monad m) => MonadCatch e (EMT (Caught e l) m) (EMT l m) 

Exception primitives

throw :: (Exception e, Throws e l, Monad m) => e -> EMT l m a Source

The throw primitive

rethrow :: (Throws e l, Monad m) => CallTrace -> e -> EMT l m a Source

Rethrow an exception keeping the call trace

catch :: (Exception e, Monad m) => EMT (Caught e l) m a -> (e -> EMT l m a) -> EMT l m a Source

The catch primitive

catchWithSrcLoc :: (Exception e, Monad m) => EMT (Caught e l) m a -> (CallTrace -> e -> EMT l m a) -> EMT l m a Source

Catch and exception and observe the stack trace. If on top of the IO monad, this will also capture asynchronous exceptions

finally :: Monad m => EMT l m a -> EMT l m b -> EMT l m a Source

Sequence two computations discarding the result of the second one. If the first computation rises an exception, the second computation is run and then the exception is rethrown.

onException :: Monad m => EMT l m a -> EMT l m b -> EMT l m a Source

Like finally, but performs the second computation only when the first one rises an exception TODO asynchronous exceptions! This needs to be moved to Monad

bracket Source

Arguments

:: Monad m 
=> EMT l m a

acquire resource

-> (a -> EMT l m b)

release resource

-> (a -> EMT l m c)

computation

-> EMT l m c 

wrapException :: (Exception e, Throws e' l, Monad m) => (e -> e') -> EMT (Caught e l) m a -> EMT l m a Source

Capture an exception e, wrap it, and rethrow. Keeps the original monadic call trace.

data FailException Source

FailException is thrown by Monad fail

Constructors

FailException String 

data MonadZeroException Source

MonadZeroException is thrown by MonadPlus mzero

Constructors

MonadZeroException 

mplusDefault :: Monad m => EMT l m a -> EMT l m a -> EMT l m a Source

This function may be used as a value for mplus in MonadPlus

Reexports

class (Typeable * e, Show e) => Exception e where

Any type that you wish to throw or catch as an exception must be an instance of the Exception class. The simplest case is a new exception type directly below the root:

data MyException = ThisException | ThatException
    deriving (Show, Typeable)

instance Exception MyException

The default method definitions in the Exception class do what we need in this case. You can now throw and catch ThisException and ThatException as exceptions:

*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException

In more complicated examples, you may wish to define a whole hierarchy of exceptions:

---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler

data SomeCompilerException = forall e . Exception e => SomeCompilerException e
    deriving Typeable

instance Show SomeCompilerException where
    show (SomeCompilerException e) = show e

instance Exception SomeCompilerException

compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException

compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
    SomeCompilerException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler

data SomeFrontendException = forall e . Exception e => SomeFrontendException e
    deriving Typeable

instance Show SomeFrontendException where
    show (SomeFrontendException e) = show e

instance Exception SomeFrontendException where
    toException = compilerExceptionToException
    fromException = compilerExceptionFromException

frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException

frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
    SomeFrontendException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception

data MismatchedParentheses = MismatchedParentheses
    deriving (Typeable, Show)

instance Exception MismatchedParentheses where
    toException   = frontendExceptionToException
    fromException = frontendExceptionFromException

We can now catch a MismatchedParentheses exception as MismatchedParentheses, SomeFrontendException or SomeCompilerException, but not other types, e.g. IOException:

*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: IOException))
*** Exception: MismatchedParentheses

Minimal complete definition

Nothing

data SomeException :: * where

The SomeException type is the root of the exception type hierarchy. When an exception of type e is thrown, behind the scenes it is encapsulated in a SomeException.

Constructors

SomeException :: Exception e => e -> SomeException 

Instances

Show SomeException 
Exception SomeException 
UncaughtException SomeException 
Typeable * SomeException 
Exception e => Throws e (Caught SomeException l)

SomeException is at the top of the exception hierarchy . Capturing SomeException captures every possible exception

Throws SomeException (Caught SomeException l) 

type Typeable1 a = Typeable (* -> *) a

class Monad f => Failure e f where

Methods

failure :: e -> f v

Instances

Failure e [] 
Failure e Maybe 
Exception e => Failure e IO 
(MonadTrans t, Failure e m, Monad (t m)) => Failure e (t m)

Instance for all monad transformers, simply lift the failure into the base monad.

Failure e (Either e) 
(Exception e, Throws e l, Monad m) => Failure e (EMT l m)