module Csound.Typed.Opcode.Vectorial (
    
    
    -- * Tables.
    vtaba, vtabi, vtabk, vtable1k, vtablea, vtablei, vtablek, vtablewa, vtablewi, vtablewk, vtabwa, vtabwi, vtabwk,
    
    -- * Scalar operations.
    vadd, vadd_i, vexp, vexp_i, vmult, vmult_i, vpow, vpow_i,
    
    -- * Vectorial operations.
    vaddv, vaddv_i, vcopy, vcopy_i, vdivv, vdivv_i, vexpv, vexpv_i, vmap, vmultv, vmultv_i, vpowv, vpowv_i, vsubv, vsubv_i,
    
    -- * Envelopes.
    vexpseg, vlinseg,
    
    -- * Limiting and Wrapping.
    vlimit, vmirror, vwrap,
    
    -- * Delay Paths.
    vdelayk, vecdelay, vport,
    
    -- * Random.
    vrandh, vrandi,
    
    -- * Cellular Automata.
    cell, vcella) where

import Control.Monad.Trans.Class
import Csound.Dynamic
import Csound.Typed

-- Tables.

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables at a-rate.
--
-- >  vtaba   andx, ifn, aout1 [, aout2, aout3, .... , aoutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtaba.html>
vtaba ::  Sig -> Tab -> Sig -> SE ()
vtaba :: Sig -> Tab -> Sig -> SE ()
vtaba Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtaba" [(Rate
Xr,[Rate
Ar,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3]

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables.
--
-- >  vtabi   indx, ifn, iout1 [, iout2, iout3, .... , ioutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtabi.html>
vtabi ::  D -> Tab -> D -> SE ()
vtabi :: D -> Tab -> D -> SE ()
vtabi D
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3]

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables at k-rate.
--
-- >  vtabk   kndx, ifn, kout1 [, kout2, kout3, .... , koutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtabk.html>
vtabk ::  Sig -> Tab -> Sig -> SE ()
vtabk :: Sig -> Tab -> Sig -> SE ()
vtabk Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabk" [(Rate
Xr,[Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3]

-- | 
-- Read a vector (several scalars simultaneously) from a table.
--
-- This opcode reads vectors from tables at k-rate.
--
-- >  vtable1k   kfn,kout1 [, kout2, kout3, .... , koutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtable1k.html>
vtable1k ::  Tab -> Sig -> SE ()
vtable1k :: Tab -> Sig -> SE ()
vtable1k Tab
b1 Sig
b2 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2
    where f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"vtable1k" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2]

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables at a-rate.
--
-- >  vtablea   andx, kfn, kinterp, ixmode, aout1 [, aout2, aout3, .... , aoutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablea.html>
vtablea ::  Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablea :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablea Sig
b1 Tab
b2 Sig
b3 D
b4 Sig
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablea" [(Rate
Xr,[Rate
Ar,Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables.
--
-- >  vtablei   indx, ifn, interp, ixmode, iout1 [, iout2, iout3, .... , ioutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablei.html>
vtablei ::  D -> Tab -> D -> D -> D -> SE ()
vtablei :: D -> Tab -> D -> D -> D -> SE ()
vtablei D
b1 Tab
b2 D
b3 D
b4 D
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablei" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- | 
-- Read vectors (from tables -or arrays of vectors).
--
-- This opcode reads vectors from tables at k-rate.
--
-- >  vtablek   kndx, kfn, kinterp, ixmode, kout1 [, kout2, kout3, .... , koutN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablek.html>
vtablek ::  Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablek :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablek Sig
b1 Tab
b2 Sig
b3 D
b4 Sig
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablek" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at a-rate.
--
-- >  vtablewa   andx, kfn, ixmode, ainarg1 [, ainarg2, ainarg3 , .... , ainargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablewa.html>
vtablewa ::  Sig -> Tab -> D -> Sig -> SE ()
vtablewa :: Sig -> Tab -> D -> Sig -> SE ()
vtablewa Sig
b1 Tab
b2 D
b3 Sig
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewa" [(Rate
Xr,[Rate
Ar,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at init time.
--
-- >  vtablewi   indx, ifn, ixmode, inarg1 [, inarg2, inarg3 , .... , inargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablewi.html>
vtablewi ::  D -> Tab -> D -> D -> SE ()
vtablewi :: D -> Tab -> D -> D -> SE ()
vtablewi D
b1 Tab
b2 D
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at k-rate.
--
-- >  vtablewk   kndx, kfn, ixmode, kinarg1 [, kinarg2, kinarg3 , .... , kinargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtablewk.html>
vtablewk ::  Sig -> Tab -> D -> Sig -> SE ()
vtablewk :: Sig -> Tab -> D -> Sig -> SE ()
vtablewk Sig
b1 Tab
b2 D
b3 Sig
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewk" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at a-rate.
--
-- >  vtabwa   andx, ifn, ainarg1 [, ainarg2, ainarg3 , .... , ainargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtabwa.html>
vtabwa ::  Sig -> Tab -> Sig -> SE ()
vtabwa :: Sig -> Tab -> Sig -> SE ()
vtabwa Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwa" [(Rate
Xr,[Rate
Ar,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at init time.
--
-- >  vtabwi   indx, ifn, inarg1 [, inarg2, inarg3 , .... , inargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtabwi.html>
vtabwi ::  D -> Tab -> D -> SE ()
vtabwi :: D -> Tab -> D -> SE ()
vtabwi D
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3]

-- | 
-- Write vectors (to tables -or arrays of vectors).
--
-- This opcode writes vectors to tables at k-rate.
--
-- >  vtabwk   kndx, ifn, kinarg1 [, kinarg2, kinarg3 , .... , kinargN ]
--
-- csound doc: <http://csound.com/docs/manual/vtabwk.html>
vtabwk ::  Sig -> Tab -> Sig -> SE ()
vtabwk :: Sig -> Tab -> Sig -> SE ()
vtabwk Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwk" [(Rate
Xr,[Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3]

-- Scalar operations.

-- | 
-- Adds a scalar value to a vector in a table.
--
-- >  vadd   ifn, kval, kelements [, kdstoffset] [, kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vadd.html>
vadd ::  Tab -> Sig -> Sig -> SE ()
vadd :: Tab -> Sig -> Sig -> SE ()
vadd Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vadd" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Adds a scalar value to a vector in a table.
--
-- >  vadd_i   ifn, ival, ielements [, idstoffset]
--
-- csound doc: <http://csound.com/docs/manual/vadd_i.html>
vadd_i ::  Tab -> D -> D -> SE ()
vadd_i :: Tab -> D -> D -> SE ()
vadd_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vadd_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs power-of operations between a vector and a scalar
--
-- >  vexp   ifn, kval, kelements [, kdstoffset] [, kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vexp.html>
vexp ::  Tab -> Sig -> Sig -> SE ()
vexp :: Tab -> Sig -> Sig -> SE ()
vexp Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexp" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs power-of operations between a vector and a scalar
--
-- >  vexp_i   ifn, ival, ielements[, idstoffset]
--
-- csound doc: <http://csound.com/docs/manual/vexp_i.html>
vexp_i ::  Tab -> D -> D -> SE ()
vexp_i :: Tab -> D -> D -> SE ()
vexp_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexp_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Multiplies a vector in a table by a scalar value.
--
-- >  vmult   ifn, kval, kelements [, kdstoffset] [, kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vmult.html>
vmult ::  Tab -> Sig -> Sig -> SE ()
vmult :: Tab -> Sig -> Sig -> SE ()
vmult Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmult" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Multiplies a vector in a table by a scalar value.
--
-- >  vmult_i   ifn, ival, ielements [, idstoffset]
--
-- csound doc: <http://csound.com/docs/manual/vmult_i.html>
vmult_i ::  Tab -> D -> D -> SE ()
vmult_i :: Tab -> D -> D -> SE ()
vmult_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmult_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Raises each element of a vector to a scalar power.
--
-- >  vpow   ifn, kval, kelements [, kdstoffset] [, kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vpow.html>
vpow ::  Tab -> Sig -> Sig -> SE ()
vpow :: Tab -> Sig -> Sig -> SE ()
vpow Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpow" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Raises each element of a vector to a scalar power
--
-- >  vpow_i   ifn, ival, ielements [, idstoffset]
--
-- csound doc: <http://csound.com/docs/manual/vpow_i.html>
vpow_i ::  Tab -> D -> D -> SE ()
vpow_i :: Tab -> D -> D -> SE ()
vpow_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpow_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- Vectorial operations.

-- | 
-- Performs addition between two vectorial control signals.
--
-- >  vaddv   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vaddv.html>
vaddv ::  Tab -> Tab -> Sig -> SE ()
vaddv :: Tab -> Tab -> Sig -> SE ()
vaddv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vaddv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs addition between two vectorial control signals at init time.
--
-- >  vaddv_i   ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vaddv_i.html>
vaddv_i ::  Tab -> Tab -> D -> SE ()
vaddv_i :: Tab -> Tab -> D -> SE ()
vaddv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vaddv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Copies between two vectorial control signals
--
-- >  vcopy   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [, kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vcopy.html>
vcopy ::  Tab -> Tab -> Sig -> SE ()
vcopy :: Tab -> Tab -> Sig -> SE ()
vcopy Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vcopy" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Copies a vector from one table to another.
--
-- >  vcopy_i   ifn1, ifn2, ielements [,idstoffset, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vcopy_i.html>
vcopy_i ::  Tab -> Tab -> D -> SE ()
vcopy_i :: Tab -> Tab -> D -> SE ()
vcopy_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vcopy_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs division between two vectorial control signals
--
-- >  vdivv   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vdivv.html>
vdivv ::  Tab -> Tab -> Sig -> SE ()
vdivv :: Tab -> Tab -> Sig -> SE ()
vdivv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdivv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs division between two vectorial control signals at init time.
--
-- >  vdivv_i   ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vdivv_i.html>
vdivv_i ::  Tab -> Tab -> D -> SE ()
vdivv_i :: Tab -> Tab -> D -> SE ()
vdivv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdivv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs exponential operations between two vectorial control signals
--
-- >  vexpv   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vexpv.html>
vexpv ::  Tab -> Tab -> Sig -> SE ()
vexpv :: Tab -> Tab -> Sig -> SE ()
vexpv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs exponential operations between two vectorial control signals at init time.
--
-- >  vexpv_i   ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vexpv_i.html>
vexpv_i ::  Tab -> Tab -> D -> SE ()
vexpv_i :: Tab -> Tab -> D -> SE ()
vexpv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Maps elements from a vector according to indexes contained in another vector.
--
-- Maps elements from a vector onto another according to the indexes of a this vector.
--
-- >  vmap   ifn1, ifn2, ielements [,idstoffset, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vmap.html>
vmap ::  Tab -> Tab -> D -> SE ()
vmap :: Tab -> Tab -> D -> SE ()
vmap Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmap" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs mutiplication between two vectorial control signals
--
-- >  vmultv   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vmultv.html>
vmultv ::  Tab -> Tab -> Sig -> SE ()
vmultv :: Tab -> Tab -> Sig -> SE ()
vmultv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmultv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs mutiplication between two vectorial control signals at init time.
--
-- >  vmultv_i   ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vmultv_i.html>
vmultv_i ::  Tab -> Tab -> D -> SE ()
vmultv_i :: Tab -> Tab -> D -> SE ()
vmultv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmultv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs power-of operations between two vectorial control signals
--
-- >  vpowv  ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vpowv.html>
vpowv ::  Tab -> Tab -> Sig -> SE ()
vpowv :: Tab -> Tab -> Sig -> SE ()
vpowv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpowv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs power-of operations between two vectorial control signals at init time.
--
-- >  vpowv_i  ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vpowv_i.html>
vpowv_i ::  Tab -> Tab -> D -> SE ()
vpowv_i :: Tab -> Tab -> D -> SE ()
vpowv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpowv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Performs subtraction between two vectorial control signals
--
-- >  vsubv   ifn1, ifn2, kelements [, kdstoffset] [, ksrcoffset] [,kverbose]
--
-- csound doc: <http://csound.com/docs/manual/vsubv.html>
vsubv ::  Tab -> Tab -> Sig -> SE ()
vsubv :: Tab -> Tab -> Sig -> SE ()
vsubv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vsubv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]

-- | 
-- Performs subtraction between two vectorial control signals at init time.
--
-- >  vsubv_i   ifn1, ifn2, ielements [, idstoffset] [, isrcoffset]
--
-- csound doc: <http://csound.com/docs/manual/vsubv_i.html>
vsubv_i ::  Tab -> Tab -> D -> SE ()
vsubv_i :: Tab -> Tab -> D -> SE ()
vsubv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vsubv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- Envelopes.

-- | 
-- Vectorial envelope generator
--
-- Generate exponential vectorial segments
--
-- >  vexpseg   ifnout, ielements, ifn1, idur1, ifn2 [, idur2, ifn3 [...]]
--
-- csound doc: <http://csound.com/docs/manual/vexpseg.html>
vexpseg ::  Tab -> D -> Tab -> D -> Tab -> SE ()
vexpseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vexpseg Tab
b1 D
b2 Tab
b3 D
b4 Tab
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpseg" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- | 
-- Vectorial envelope generator
--
-- Generate linear vectorial segments
--
-- >  vlinseg   ifnout, ielements, ifn1, idur1, ifn2 [, idur2, ifn3 [...]]
--
-- csound doc: <http://csound.com/docs/manual/vlinseg.html>
vlinseg ::  Tab -> D -> Tab -> D -> Tab -> SE ()
vlinseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vlinseg Tab
b1 D
b2 Tab
b3 D
b4 Tab
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vlinseg" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- Limiting and Wrapping.

-- | 
-- Limiting and Wrapping Vectorial Signals
--
-- Limits elements of vectorial control signals.
--
-- >  vlimit   ifn, kmin, kmax, ielements
--
-- csound doc: <http://csound.com/docs/manual/vlimit.html>
vlimit ::  Tab -> Sig -> Sig -> D -> SE ()
vlimit :: Tab -> Sig -> Sig -> D -> SE ()
vlimit Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vlimit" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Limiting and Wrapping Vectorial Signals
--
-- 'Reflects' elements of vectorial control signals on thresholds.
--
-- >  vmirror   ifn, kmin, kmax, ielements
--
-- csound doc: <http://csound.com/docs/manual/vmirror.html>
vmirror ::  Tab -> Sig -> Sig -> D -> SE ()
vmirror :: Tab -> Sig -> Sig -> D -> SE ()
vmirror Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vmirror" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Limiting and Wrapping Vectorial Signals
--
-- Wraps elements of vectorial control signals.
--
-- >  vwrap   ifn, kmin, kmax, ielements
--
-- csound doc: <http://csound.com/docs/manual/vwrap.html>
vwrap ::  Tab -> Sig -> Sig -> D -> SE ()
vwrap :: Tab -> Sig -> Sig -> D -> SE ()
vwrap Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vwrap" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]

-- Delay Paths.

-- | 
-- k-rate variable time delay.
--
-- Variable delay applied to a k-rate signal
--
-- > kout  vdelayk   ksig, kdel, imaxdel [, iskip, imode]
--
-- csound doc: <http://csound.com/docs/manual/vdelayk.html>
vdelayk ::  Sig -> Sig -> D -> Sig
vdelayk :: Sig -> Sig -> D -> Sig
vdelayk Sig
b1 Sig
b2 D
b3 = GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdelayk" [(Rate
Kr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- | 
-- Vectorial Control-rate Delay Paths
--
-- Generate a sort of 'vectorial' delay
--
-- >  vecdelay   ifn, ifnIn, ifnDel, ielements, imaxdel [, iskip]
--
-- csound doc: <http://csound.com/docs/manual/vecdelay.html>
vecdelay ::  Tab -> Tab -> Tab -> D -> D -> SE ()
vecdelay :: Tab -> Tab -> Tab -> D -> D -> SE ()
vecdelay Tab
b1 Tab
b2 Tab
b3 D
b4 D
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5
    where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vecdelay" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4,E
a5]

-- | 
-- Vectorial Control-rate Delay Paths
--
-- Generate a sort of 'vectorial' portamento
--
-- >  vport  ifn, khtime, ielements [, ifnInit]
--
-- csound doc: <http://csound.com/docs/manual/vport.html>
vport ::  Tab -> Sig -> D -> SE ()
vport :: Tab -> Sig -> D -> SE ()
vport Tab
b1 Sig
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
    where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vport" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]

-- Random.

-- | 
-- Generates a vector of random numbers stored into a table, holding the values for a period of time.
--
-- Generates a vector of random numbers stored into a table, holding the values for a period of time. Generates a sort of 'vectorial band-limited noise'.
--
-- >  vrandh   ifn,  krange, kcps, ielements [, idstoffset] [, iseed] \
-- >           [, isize] [, ioffset]
--
-- csound doc: <http://csound.com/docs/manual/vrandh.html>
vrandh ::  Tab -> Sig -> Sig -> D -> SE ()
vrandh :: Tab -> Sig -> Sig -> D -> SE ()
vrandh Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vrandh" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]

-- | 
-- Generate a sort of 'vectorial band-limited noise'
--
-- >  vrandi   ifn,  krange, kcps, ielements [, idstoffset] [, iseed] \
-- >           [, isize] [, ioffset]
--
-- csound doc: <http://csound.com/docs/manual/vrandi.html>
vrandi ::  Tab -> Sig -> Sig -> D -> SE ()
vrandi :: Tab -> Sig -> Sig -> D -> SE ()
vrandi Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
    where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vrandi" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]

-- Cellular Automata.

-- | 
-- Cellular Automaton
--
-- One-Dimensional Cellular Automaton. This opcode is the
--          modified version of vcella by Gabriel Maldonado.
--
-- >  cell  ktrig, kreinit, ioutFunc, initStateFunc, iRuleFunc, ielements
--
-- csound doc: <http://csound.com/docs/manual/cell.html>
cell ::  Sig -> Sig -> D -> D -> D -> D -> SE ()
cell :: Sig -> Sig -> D -> D -> D -> D -> SE ()
cell Sig
b1 Sig
b2 D
b3 D
b4 D
b5 D
b6 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b6
    where f :: E -> E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 E
a6 = Name -> Spec1 -> [E] -> E
opcs Name
"cell" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4,E
a5,E
a6]

-- | 
-- Cellular Automata
--
-- Unidimensional Cellular Automata applied to Csound vectors
--
-- >  vcella  ktrig, kreinit, ioutFunc, initStateFunc, \
-- >           iRuleFunc, ielements, irulelen [, iradius]
--
-- csound doc: <http://csound.com/docs/manual/vcella.html>
vcella ::  Sig -> Sig -> D -> D -> D -> D -> D -> SE ()
vcella :: Sig -> Sig -> D -> D -> D -> D -> D -> SE ()
vcella Sig
b1 Sig
b2 D
b3 D
b4 D
b5 D
b6 D
b7 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b6 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b7
    where f :: E -> E -> E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 E
a6 E
a7 = Name -> Spec1 -> [E] -> E
opcs Name
"vcella" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1
                                                                                  ,E
a2
                                                                                  ,E
a3
                                                                                  ,E
a4
                                                                                  ,E
a5
                                                                                  ,E
a6
                                                                                  ,E
a7]