module Csound.Typed.Opcode.Vectorial (
vtaba, vtabi, vtabk, vtable1k, vtablea, vtablei, vtablek, vtablewa, vtablewi, vtablewk, vtabwa, vtabwi, vtabwk,
vadd, vadd_i, vexp, vexp_i, vmult, vmult_i, vpow, vpow_i,
vaddv, vaddv_i, vcopy, vcopy_i, vdivv, vdivv_i, vexpv, vexpv_i, vmap, vmultv, vmultv_i, vpowv, vpowv_i, vsubv, vsubv_i,
vexpseg, vlinseg,
vlimit, vmirror, vwrap,
vdelayk, vecdelay, vport,
vrandh, vrandi,
cell, vcella) where
import Control.Monad.Trans.Class
import Csound.Dynamic
import Csound.Typed
vtaba :: Sig -> Tab -> Sig -> SE ()
vtaba :: Sig -> Tab -> Sig -> SE ()
vtaba Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtaba" [(Rate
Xr,[Rate
Ar,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3]
vtabi :: D -> Tab -> D -> SE ()
vtabi :: D -> Tab -> D -> SE ()
vtabi D
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3]
vtabk :: Sig -> Tab -> Sig -> SE ()
vtabk :: Sig -> Tab -> Sig -> SE ()
vtabk Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabk" [(Rate
Xr,[Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3]
vtable1k :: Tab -> Sig -> SE ()
vtable1k :: Tab -> Sig -> SE ()
vtable1k Tab
b1 Sig
b2 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2
where f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"vtable1k" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2]
vtablea :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablea :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablea Sig
b1 Tab
b2 Sig
b3 D
b4 Sig
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablea" [(Rate
Xr,[Rate
Ar,Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3,E
a4,E
a5]
vtablei :: D -> Tab -> D -> D -> D -> SE ()
vtablei :: D -> Tab -> D -> D -> D -> SE ()
vtablei D
b1 Tab
b2 D
b3 D
b4 D
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablei" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]
vtablek :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablek :: Sig -> Tab -> Sig -> D -> Sig -> SE ()
vtablek Sig
b1 Tab
b2 Sig
b3 D
b4 Sig
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablek" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3,E
a4,E
a5]
vtablewa :: Sig -> Tab -> D -> Sig -> SE ()
vtablewa :: Sig -> Tab -> D -> Sig -> SE ()
vtablewa Sig
b1 Tab
b2 D
b3 Sig
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewa" [(Rate
Xr,[Rate
Ar,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3,E
a4]
vtablewi :: D -> Tab -> D -> D -> SE ()
vtablewi :: D -> Tab -> D -> D -> SE ()
vtablewi D
b1 Tab
b2 D
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4]
vtablewk :: Sig -> Tab -> D -> Sig -> SE ()
vtablewk :: Sig -> Tab -> D -> Sig -> SE ()
vtablewk Sig
b1 Tab
b2 D
b3 Sig
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vtablewk" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3,E
a4]
vtabwa :: Sig -> Tab -> Sig -> SE ()
vtabwa :: Sig -> Tab -> Sig -> SE ()
vtabwa Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwa" [(Rate
Xr,[Rate
Ar,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ar))] [E
a1,E
a2,E
a3]
vtabwi :: D -> Tab -> D -> SE ()
vtabwi :: D -> Tab -> D -> SE ()
vtabwi D
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwi" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3]
vtabwk :: Sig -> Tab -> Sig -> SE ()
vtabwk :: Sig -> Tab -> Sig -> SE ()
vtabwk Sig
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vtabwk" [(Rate
Xr,[Rate
Kr,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Kr))] [E
a1,E
a2,E
a3]
vadd :: Tab -> Sig -> Sig -> SE ()
vadd :: Tab -> Sig -> Sig -> SE ()
vadd Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vadd" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vadd_i :: Tab -> D -> D -> SE ()
vadd_i :: Tab -> D -> D -> SE ()
vadd_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vadd_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vexp :: Tab -> Sig -> Sig -> SE ()
vexp :: Tab -> Sig -> Sig -> SE ()
vexp Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexp" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vexp_i :: Tab -> D -> D -> SE ()
vexp_i :: Tab -> D -> D -> SE ()
vexp_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexp_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vmult :: Tab -> Sig -> Sig -> SE ()
vmult :: Tab -> Sig -> Sig -> SE ()
vmult Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmult" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vmult_i :: Tab -> D -> D -> SE ()
vmult_i :: Tab -> D -> D -> SE ()
vmult_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmult_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vpow :: Tab -> Sig -> Sig -> SE ()
vpow :: Tab -> Sig -> Sig -> SE ()
vpow Tab
b1 Sig
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpow" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vpow_i :: Tab -> D -> D -> SE ()
vpow_i :: Tab -> D -> D -> SE ()
vpow_i Tab
b1 D
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpow_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vaddv :: Tab -> Tab -> Sig -> SE ()
vaddv :: Tab -> Tab -> Sig -> SE ()
vaddv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vaddv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vaddv_i :: Tab -> Tab -> D -> SE ()
vaddv_i :: Tab -> Tab -> D -> SE ()
vaddv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vaddv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vcopy :: Tab -> Tab -> Sig -> SE ()
vcopy :: Tab -> Tab -> Sig -> SE ()
vcopy Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vcopy" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vcopy_i :: Tab -> Tab -> D -> SE ()
vcopy_i :: Tab -> Tab -> D -> SE ()
vcopy_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vcopy_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vdivv :: Tab -> Tab -> Sig -> SE ()
vdivv :: Tab -> Tab -> Sig -> SE ()
vdivv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdivv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vdivv_i :: Tab -> Tab -> D -> SE ()
vdivv_i :: Tab -> Tab -> D -> SE ()
vdivv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdivv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vexpv :: Tab -> Tab -> Sig -> SE ()
vexpv :: Tab -> Tab -> Sig -> SE ()
vexpv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vexpv_i :: Tab -> Tab -> D -> SE ()
vexpv_i :: Tab -> Tab -> D -> SE ()
vexpv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vmap :: Tab -> Tab -> D -> SE ()
vmap :: Tab -> Tab -> D -> SE ()
vmap Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmap" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vmultv :: Tab -> Tab -> Sig -> SE ()
vmultv :: Tab -> Tab -> Sig -> SE ()
vmultv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmultv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vmultv_i :: Tab -> Tab -> D -> SE ()
vmultv_i :: Tab -> Tab -> D -> SE ()
vmultv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vmultv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vpowv :: Tab -> Tab -> Sig -> SE ()
vpowv :: Tab -> Tab -> Sig -> SE ()
vpowv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpowv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vpowv_i :: Tab -> Tab -> D -> SE ()
vpowv_i :: Tab -> Tab -> D -> SE ()
vpowv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vpowv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vsubv :: Tab -> Tab -> Sig -> SE ()
vsubv :: Tab -> Tab -> Sig -> SE ()
vsubv Tab
b1 Tab
b2 Sig
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vsubv" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Kr,Rate
Kr,Rate
Kr,Rate
Kr])] [E
a1,E
a2,E
a3]
vsubv_i :: Tab -> Tab -> D -> SE ()
vsubv_i :: Tab -> Tab -> D -> SE ()
vsubv_i Tab
b1 Tab
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vsubv_i" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vexpseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vexpseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vexpseg Tab
b1 D
b2 Tab
b3 D
b4 Tab
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vexpseg" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]
vlinseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vlinseg :: Tab -> D -> Tab -> D -> Tab -> SE ()
vlinseg Tab
b1 D
b2 Tab
b3 D
b4 Tab
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vlinseg" [(Rate
Xr,(Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Ir))] [E
a1,E
a2,E
a3,E
a4,E
a5]
vlimit :: Tab -> Sig -> Sig -> D -> SE ()
vlimit :: Tab -> Sig -> Sig -> D -> SE ()
vlimit Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vlimit" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
vmirror :: Tab -> Sig -> Sig -> D -> SE ()
vmirror :: Tab -> Sig -> Sig -> D -> SE ()
vmirror Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vmirror" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
vwrap :: Tab -> Sig -> Sig -> D -> SE ()
vwrap :: Tab -> Sig -> Sig -> D -> SE ()
vwrap Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vwrap" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
vdelayk :: Sig -> Sig -> D -> Sig
vdelayk :: Sig -> Sig -> D -> Sig
vdelayk Sig
b1 Sig
b2 D
b3 = GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vdelayk" [(Rate
Kr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vecdelay :: Tab -> Tab -> Tab -> D -> D -> SE ()
vecdelay :: Tab -> Tab -> Tab -> D -> D -> SE ()
vecdelay Tab
b1 Tab
b2 Tab
b3 D
b4 D
b5 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Tab -> GE E
unTab Tab
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5
where f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"vecdelay" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4,E
a5]
vport :: Tab -> Sig -> D -> SE ()
vport :: Tab -> Sig -> D -> SE ()
vport Tab
b1 Sig
b2 D
b3 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E
f (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3
where f :: E -> E -> E -> E
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> E
opcs Name
"vport" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3]
vrandh :: Tab -> Sig -> Sig -> D -> SE ()
vrandh :: Tab -> Sig -> Sig -> D -> SE ()
vrandh Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vrandh" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
vrandi :: Tab -> Sig -> Sig -> D -> SE ()
vrandi :: Tab -> Sig -> Sig -> D -> SE ()
vrandi Tab
b1 Sig
b2 Sig
b3 D
b4 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E
f (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4
where f :: E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> E
opcs Name
"vrandi" [(Rate
Xr,[Rate
Ir,Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
cell :: Sig -> Sig -> D -> D -> D -> D -> SE ()
cell :: Sig -> Sig -> D -> D -> D -> D -> SE ()
cell Sig
b1 Sig
b2 D
b3 D
b4 D
b5 D
b6 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b6
where f :: E -> E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 E
a6 = Name -> Spec1 -> [E] -> E
opcs Name
"cell" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4,E
a5,E
a6]
vcella :: Sig -> Sig -> D -> D -> D -> D -> D -> SE ()
vcella :: Sig -> Sig -> D -> D -> D -> D -> D -> SE ()
vcella Sig
b1 Sig
b2 D
b3 D
b4 D
b5 D
b6 D
b7 = Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ (E -> Dep ()
forall (m :: * -> *). Monad m => E -> DepT m ()
depT_ (E -> Dep ()) -> DepT GE E -> Dep ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (DepT GE E -> Dep ()) -> DepT GE E -> Dep ()
forall a b. (a -> b) -> a -> b
$ GE E -> DepT GE E
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> GE E -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E -> E -> E -> E)
-> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b3 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b4 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b5 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b6 GE (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b7
where f :: E -> E -> E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 E
a6 E
a7 = Name -> Spec1 -> [E] -> E
opcs Name
"vcella" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1
,E
a2
,E
a3
,E
a4
,E
a5
,E
a6
,E
a7]