module Csound.Typed.Opcode.Miscellaneous (
directory, fareylen, fareyleni, framebuffer, modmatrix, nchnls_hw, olabuffer, pwd, select, system_i, system, tableshuffle, tableshufflei) where
import Control.Monad.Trans.Class
import Control.Monad
import Csound.Dynamic
import Csound.Typed
directory :: Str -> Str
directory :: Str -> Str
directory Str
b1 =
GE E -> Str
Str (GE E -> Str) -> GE E -> Str
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Str -> GE E
unStr Str
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"directory" [(Rate
Sr,[Rate
Sr,Rate
Sr])] [E
a1]
fareylen :: Tab -> Sig
fareylen :: Tab -> Sig
fareylen Tab
b1 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"fareylen" [(Rate
Kr,[Rate
Kr])] [E
a1]
fareyleni :: Tab -> D
fareyleni :: Tab -> D
fareyleni Tab
b1 =
GE E -> D
D (GE E -> D) -> GE E -> D
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tab -> GE E
unTab Tab
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"fareyleni" [(Rate
Ir,[Rate
Ir])] [E
a1]
framebuffer :: Sig -> D -> Sig
framebuffer :: Sig -> D -> Sig
framebuffer Sig
b1 D
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"framebuffer" [(Rate
Kr,[Rate
Ar,Rate
Ir]),(Rate
Ar,[Rate
Kr,Rate
Ir])] [E
a1,E
a2]
modmatrix :: Tab -> Tab -> Tab -> D -> D -> D -> Sig -> SE ()
modmatrix :: Tab -> Tab -> Tab -> D -> D -> D -> Sig -> SE ()
modmatrix Tab
b1 Tab
b2 Tab
b3 D
b4 D
b5 D
b6 Sig
b7 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E -> E -> Dep ()
forall {m :: * -> *}.
Monad m =>
E -> E -> E -> E -> E -> E -> E -> DepT m ()
f (E -> E -> E -> E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> E -> E -> E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Tab -> GE E) -> Tab -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Tab -> GE E
unTab) Tab
b1 DepT GE (E -> E -> E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Tab -> GE E) -> Tab -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Tab -> GE E
unTab) Tab
b2 DepT GE (E -> E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Tab -> GE E) -> Tab -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Tab -> GE E
unTab) Tab
b3 DepT GE (E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b4 DepT GE (E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b5 DepT GE (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b6 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b7
where
f :: E -> E -> E -> E -> E -> E -> E -> DepT m ()
f E
a1 E
a2 E
a3 E
a4 E
a5 E
a6 E
a7 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"modmatrix" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Kr])] [E
a1
,E
a2
,E
a3
,E
a4
,E
a5
,E
a6
,E
a7]
nchnls_hw :: (D,D)
nchnls_hw :: (D, D)
nchnls_hw =
GE (MultiOut [E]) -> (D, D)
forall a. Tuple a => GE (MultiOut [E]) -> a
pureTuple (GE (MultiOut [E]) -> (D, D)) -> GE (MultiOut [E]) -> (D, D)
forall a b. (a -> b) -> a -> b
$ MultiOut [E] -> GE (MultiOut [E])
forall a. a -> GE a
forall (m :: * -> *) a. Monad m => a -> m a
return (MultiOut [E] -> GE (MultiOut [E]))
-> MultiOut [E] -> GE (MultiOut [E])
forall a b. (a -> b) -> a -> b
$ MultiOut [E]
f
where
f :: MultiOut [E]
f = Name -> Specs -> [E] -> MultiOut [E]
mopcs Name
"nchnls_hw" ([Rate
Ir,Rate
Ir],[]) []
olabuffer :: Sig -> D -> Sig
olabuffer :: Sig -> D -> Sig
olabuffer Sig
b1 D
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"olabuffer" [(Rate
Ar,[Rate
Kr,Rate
Ir])] [E
a1,E
a2]
pwd :: Str
pwd :: Str
pwd =
GE E -> Str
Str (GE E -> Str) -> GE E -> Str
forall a b. (a -> b) -> a -> b
$ E -> GE E
forall a. a -> GE a
forall (m :: * -> *) a. Monad m => a -> m a
return (E -> GE E) -> E -> GE E
forall a b. (a -> b) -> a -> b
$ E
f
where
f :: E
f = Name -> Spec1 -> [E] -> E
opcs Name
"pwd" [(Rate
Sr,[])] []
select :: Sig -> Sig -> Sig -> Sig -> Sig -> Sig
select :: Sig -> Sig -> Sig -> Sig -> Sig -> Sig
select Sig
b1 Sig
b2 Sig
b3 Sig
b4 Sig
b5 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> E
f (E -> E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E -> E -> E -> E) -> GE E -> GE (E -> E -> E -> E)
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2 GE (E -> E -> E -> E) -> GE E -> GE (E -> E -> E)
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b3 GE (E -> E -> E) -> GE E -> GE (E -> E)
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b4 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b5
where
f :: E -> E -> E -> E -> E -> E
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> E
opcs Name
"select" [(Rate
Ar,[Rate
Ar,Rate
Ar,Rate
Ar,Rate
Ar,Rate
Ar])] [E
a1,E
a2,E
a3,E
a4,E
a5]
system_i :: D -> Str -> D
system_i :: D -> Str -> D
system_i D
b1 Str
b2 =
GE E -> D
D (GE E -> D) -> GE E -> D
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Str -> GE E
unStr Str
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"system_i" [(Rate
Ir,[Rate
Ir,Rate
Sr,Rate
Ir])] [E
a1,E
a2]
system :: Sig -> Str -> Sig
system :: Sig -> Str -> Sig
system Sig
b1 Str
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Str -> GE E
unStr Str
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"system" [(Rate
Kr,[Rate
Kr,Rate
Sr,Rate
Kr])] [E
a1,E
a2]
tableshuffle :: Sig -> SE ()
tableshuffle :: Sig -> SE ()
tableshuffle Sig
b1 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> Dep ()
forall {m :: * -> *}. Monad m => E -> DepT m ()
f (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1
where
f :: E -> DepT m ()
f E
a1 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"tableshuffle" [(Rate
Xr,[Rate
Kr])] [E
a1]
tableshufflei :: D -> SE ()
tableshufflei :: D -> SE ()
tableshufflei D
b1 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> Dep ()
forall {m :: * -> *}. Monad m => E -> DepT m ()
f (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1
where
f :: E -> DepT m ()
f E
a1 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"tableshufflei" [(Rate
Xr,[Rate
Ir])] [E
a1]