module Csound.Typed.Opcode.Network (
remoteport, sockrecv, sockrecvs, strecv, socksend, socksends, stsend) where
import Control.Monad.Trans.Class
import Control.Monad
import Csound.Dynamic
import Csound.Typed
remoteport :: D -> SE ()
remoteport :: D -> SE ()
remoteport D
b1 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> Dep ()
forall {m :: * -> *}. Monad m => E -> DepT m ()
f (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1
where
f :: E -> DepT m ()
f E
a1 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"remoteport" [(Rate
Xr,[Rate
Ir])] [E
a1]
sockrecv :: D -> D -> Sig
sockrecv :: D -> D -> Sig
sockrecv D
b1 D
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"sockrecv" [(Rate
Ar,[Rate
Ir,Rate
Ir]),(Rate
Kr,[Rate
Ir,Rate
Ir])] [E
a1,E
a2]
sockrecvs :: D -> D -> (Sig,Sig)
sockrecvs :: D -> D -> (Sig, Sig)
sockrecvs D
b1 D
b2 =
GE (MultiOut [E]) -> (Sig, Sig)
forall a. Tuple a => GE (MultiOut [E]) -> a
pureTuple (GE (MultiOut [E]) -> (Sig, Sig))
-> GE (MultiOut [E]) -> (Sig, Sig)
forall a b. (a -> b) -> a -> b
$ E -> E -> MultiOut [E]
f (E -> E -> MultiOut [E]) -> GE E -> GE (E -> MultiOut [E])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1 GE (E -> MultiOut [E]) -> GE E -> GE (MultiOut [E])
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> MultiOut [E]
f E
a1 E
a2 = Name -> Specs -> [E] -> MultiOut [E]
mopcs Name
"sockrecvs" ([Rate
Ar,Rate
Ar],[Rate
Ir,Rate
Ir]) [E
a1,E
a2]
strecv :: forall a . Tuple a => Str -> D -> a
strecv :: forall a. Tuple a => Str -> D -> a
strecv Str
b1 D
b2 =
GE (MultiOut [E]) -> a
forall a. Tuple a => GE (MultiOut [E]) -> a
pureTuple (GE (MultiOut [E]) -> a) -> GE (MultiOut [E]) -> a
forall a b. (a -> b) -> a -> b
$ E -> E -> MultiOut [E]
f (E -> E -> MultiOut [E]) -> GE E -> GE (E -> MultiOut [E])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Str -> GE E
unStr Str
b1 GE (E -> MultiOut [E]) -> GE E -> GE (MultiOut [E])
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> MultiOut [E]
f E
a1 E
a2 = Name -> Specs -> [E] -> MultiOut [E]
mopcs Name
"strecv" ([Rate
Ar,Rate
Kr],[Rate
Sr,Rate
Ir]) [E
a1,E
a2]
socksend :: Sig -> Str -> D -> D -> SE ()
socksend :: Sig -> Str -> D -> D -> SE ()
socksend Sig
b1 Str
b2 D
b3 D
b4 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> E -> E -> DepT m ()
f (E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Str -> GE E) -> Str -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Str -> GE E
unStr) Str
b2 DepT GE (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b3 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b4
where
f :: E -> E -> E -> E -> DepT m ()
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"socksend" [(Rate
Xr,[Rate
Ar,Rate
Sr,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
socksends :: Sig -> Sig -> Str -> D -> D -> SE ()
socksends :: Sig -> Sig -> Str -> D -> D -> SE ()
socksends Sig
b1 Sig
b2 Str
b3 D
b4 D
b5 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> E -> E -> E -> DepT m ()
f (E -> E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2 DepT GE (E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Str -> GE E) -> Str -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Str -> GE E
unStr) Str
b3 DepT GE (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b4 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b5
where
f :: E -> E -> E -> E -> E -> DepT m ()
f E
a1 E
a2 E
a3 E
a4 E
a5 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"socksends" [(Rate
Xr,[Rate
Ar,Rate
Ar,Rate
Sr,Rate
Ir,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4,E
a5]
stsend :: Sig -> Str -> D -> SE ()
stsend :: Sig -> Str -> D -> SE ()
stsend Sig
b1 Str
b2 D
b3 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> E -> DepT m ()
f (E -> E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Str -> GE E) -> Str -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Str -> GE E
unStr) Str
b2 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b3
where
f :: E -> E -> E -> DepT m ()
f E
a1 E
a2 E
a3 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"stsend" [(Rate
Xr,[Rate
Ar,Rate
Sr,Rate
Ir])] [E
a1,E
a2,E
a3]