module Csound.Typed.Opcode.OSC (
oscBundle, oscCount, oscInit, oscInitM, oscRaw, oscSend) where
import Control.Monad.Trans.Class
import Control.Monad
import Csound.Dynamic
import Csound.Typed
oscBundle :: Sig -> D -> D -> Str -> SE ()
oscBundle :: Sig -> D -> D -> Str -> SE ()
oscBundle Sig
b1 D
b2 D
b3 Str
b4 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> E -> E -> DepT m ()
f (E -> E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> E -> E -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b2 DepT GE (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b3 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Str -> GE E) -> Str -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Str -> GE E
unStr) Str
b4
where
f :: E -> E -> E -> E -> DepT m ()
f E
a1 E
a2 E
a3 E
a4 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"OSCbundle" [(Rate
Xr,[Rate
Kr,Rate
Ir,Rate
Ir,Rate
Sr,Rate
Sr,Rate
Kr,Rate
Ir])] [E
a1,E
a2,E
a3,E
a4]
oscCount :: Sig
oscCount :: Sig
oscCount =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> GE E
forall a. a -> GE a
forall (m :: * -> *) a. Monad m => a -> m a
return (E -> GE E) -> E -> GE E
forall a b. (a -> b) -> a -> b
$ E
f
where
f :: E
f = Name -> Spec1 -> [E] -> E
opcs Name
"OSCcount" [(Rate
Kr,[])] []
oscInit :: D -> SE D
oscInit :: D -> SE D
oscInit D
b1 =
(E -> D) -> SE E -> SE D
forall a b. (a -> b) -> SE a -> SE b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ( GE E -> D
D (GE E -> D) -> (E -> GE E) -> E -> D
forall b c a. (b -> c) -> (a -> b) -> a -> c
. E -> GE E
forall a. a -> GE a
forall (m :: * -> *) a. Monad m => a -> m a
return) (SE E -> SE D) -> SE E -> SE D
forall a b. (a -> b) -> a -> b
$ DepT GE E -> SE E
forall a. Dep a -> SE a
SE (DepT GE E -> SE E) -> DepT GE E -> SE E
forall a b. (a -> b) -> a -> b
$ DepT GE (DepT GE E) -> DepT GE E
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (DepT GE E) -> DepT GE E)
-> DepT GE (DepT GE E) -> DepT GE E
forall a b. (a -> b) -> a -> b
$ E -> DepT GE E
forall {m :: * -> *}. Monad m => E -> DepT m E
f (E -> DepT GE E) -> DepT GE E -> DepT GE (DepT GE E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1
where
f :: E -> DepT m E
f E
a1 = Name -> Spec1 -> [E] -> DepT m E
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m E
opcsDep Name
"OSCinit" [(Rate
Ir,[Rate
Ir])] [E
a1]
oscInitM :: Str -> D -> D
oscInitM :: Str -> D -> D
oscInitM Str
b1 D
b2 =
GE E -> D
D (GE E -> D) -> GE E -> D
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Str -> GE E
unStr Str
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> D -> GE E
unD D
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"OSCinitM" [(Rate
Ir,[Rate
Sr,Rate
Ir])] [E
a1,E
a2]
oscRaw :: forall a . Tuple a => D -> a
oscRaw :: forall a. Tuple a => D -> a
oscRaw D
b1 =
GE (MultiOut [E]) -> a
forall a. Tuple a => GE (MultiOut [E]) -> a
pureTuple (GE (MultiOut [E]) -> a) -> GE (MultiOut [E]) -> a
forall a b. (a -> b) -> a -> b
$ E -> MultiOut [E]
f (E -> MultiOut [E]) -> GE E -> GE (MultiOut [E])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1
where
f :: E -> MultiOut [E]
f E
a1 = Name -> Specs -> [E] -> MultiOut [E]
mopcs Name
"OSCraw" ([Rate
Sr,Rate
Kr],[Rate
Ir]) [E
a1]
oscSend :: Sig -> D -> D -> D -> D -> [Sig] -> SE ()
oscSend :: Sig -> D -> D -> D -> D -> [Sig] -> SE ()
oscSend Sig
b1 D
b2 D
b3 D
b4 D
b5 [Sig]
b6 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> E -> E -> E -> [E] -> Dep ()
forall {m :: * -> *}.
Monad m =>
E -> E -> E -> E -> E -> [E] -> DepT m ()
f (E -> E -> E -> E -> E -> [E] -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> E -> [E] -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> E -> E -> E -> [E] -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> E -> [E] -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b2 DepT GE (E -> E -> E -> [E] -> Dep ())
-> DepT GE E -> DepT GE (E -> E -> [E] -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b3 DepT GE (E -> E -> [E] -> Dep ())
-> DepT GE E -> DepT GE (E -> [E] -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b4 DepT GE (E -> [E] -> Dep ())
-> DepT GE E -> DepT GE ([E] -> Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b5 DepT GE ([E] -> Dep ()) -> DepT GE [E] -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Sig -> DepT GE E) -> [Sig] -> DepT GE [E]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) [Sig]
b6
where
f :: E -> E -> E -> E -> E -> [E] -> DepT m ()
f E
a1 E
a2 E
a3 E
a4 E
a5 [E]
a6 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"OSCsend" [(Rate
Xr,[Rate
Kr,Rate
Ir,Rate
Ir,Rate
Ir,Rate
Ir] [Rate] -> [Rate] -> [Rate]
forall a. [a] -> [a] -> [a]
++ (Rate -> [Rate]
forall a. a -> [a]
repeat Rate
Xr))] ([E
a1
,E
a2
,E
a3
,E
a4
,E
a5] [E] -> [E] -> [E]
forall a. [a] -> [a] -> [a]
++ [E]
a6)