module Csound.Typed.Opcode.ZakPatchSystem (
zacl, zakinit, zamod, zar, zarg, zaw, zawm, zir, ziw, ziwm, zkcl, zkmod, zkr, zkw, zkwm) where
import Control.Monad.Trans.Class
import Control.Monad
import Csound.Dynamic
import Csound.Typed
zacl :: Sig -> SE ()
zacl :: Sig -> SE ()
zacl Sig
b1 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> Dep ()
forall {m :: * -> *}. Monad m => E -> DepT m ()
f (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1
where
f :: E -> DepT m ()
f E
a1 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zacl" [(Rate
Xr,[Rate
Kr,Rate
Kr])] [E
a1]
zakinit :: D -> D -> SE ()
zakinit :: D -> D -> SE ()
zakinit D
b1 D
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zakinit" [(Rate
Xr,[Rate
Ir,Rate
Ir])] [E
a1,E
a2]
zamod :: Sig -> Sig -> Sig
zamod :: Sig -> Sig -> Sig
zamod Sig
b1 Sig
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"zamod" [(Rate
Ar,[Rate
Ar,Rate
Kr])] [E
a1,E
a2]
zar :: Sig -> Sig
zar :: Sig -> Sig
zar Sig
b1 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"zar" [(Rate
Ar,[Rate
Kr])] [E
a1]
zarg :: Sig -> Sig -> Sig
zarg :: Sig -> Sig -> Sig
zarg Sig
b1 Sig
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"zarg" [(Rate
Ar,[Rate
Kr,Rate
Kr])] [E
a1,E
a2]
zaw :: Sig -> Sig -> SE ()
zaw :: Sig -> Sig -> SE ()
zaw Sig
b1 Sig
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zaw" [(Rate
Xr,[Rate
Ar,Rate
Kr])] [E
a1,E
a2]
zawm :: Sig -> Sig -> SE ()
zawm :: Sig -> Sig -> SE ()
zawm Sig
b1 Sig
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zawm" [(Rate
Xr,[Rate
Ar,Rate
Kr,Rate
Ir])] [E
a1,E
a2]
zir :: D -> D
zir :: D -> D
zir D
b1 =
GE E -> D
D (GE E -> D) -> GE E -> D
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> D -> GE E
unD D
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"zir" [(Rate
Ir,[Rate
Ir])] [E
a1]
ziw :: D -> D -> SE ()
ziw :: D -> D -> SE ()
ziw D
b1 D
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"ziw" [(Rate
Xr,[Rate
Ir,Rate
Ir])] [E
a1,E
a2]
ziwm :: D -> D -> SE ()
ziwm :: D -> D -> SE ()
ziwm D
b1 D
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (D -> GE E) -> D -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. D -> GE E
unD) D
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"ziwm" [(Rate
Xr,[Rate
Ir,Rate
Ir,Rate
Ir])] [E
a1,E
a2]
zkcl :: Sig -> Sig -> SE ()
zkcl :: Sig -> Sig -> SE ()
zkcl Sig
b1 Sig
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zkcl" [(Rate
Xr,[Rate
Kr,Rate
Kr])] [E
a1,E
a2]
zkmod :: Sig -> Sig -> Sig
zkmod :: Sig -> Sig -> Sig
zkmod Sig
b1 Sig
b2 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E -> E
f (E -> E -> E) -> GE E -> GE (E -> E)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1 GE (E -> E) -> GE E -> GE E
forall a b. GE (a -> b) -> GE a -> GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sig -> GE E
unSig Sig
b2
where
f :: E -> E -> E
f E
a1 E
a2 = Name -> Spec1 -> [E] -> E
opcs Name
"zkmod" [(Rate
Kr,[Rate
Kr,Rate
Kr])] [E
a1,E
a2]
zkr :: Sig -> Sig
zkr :: Sig -> Sig
zkr Sig
b1 =
GE E -> Sig
Sig (GE E -> Sig) -> GE E -> Sig
forall a b. (a -> b) -> a -> b
$ E -> E
f (E -> E) -> GE E -> GE E
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sig -> GE E
unSig Sig
b1
where
f :: E -> E
f E
a1 = Name -> Spec1 -> [E] -> E
opcs Name
"zkr" [(Rate
Kr,[Rate
Kr])] [E
a1]
zkw :: Sig -> Sig -> SE ()
zkw :: Sig -> Sig -> SE ()
zkw Sig
b1 Sig
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zkw" [(Rate
Xr,[Rate
Kr,Rate
Kr])] [E
a1,E
a2]
zkwm :: Sig -> Sig -> SE ()
zkwm :: Sig -> Sig -> SE ()
zkwm Sig
b1 Sig
b2 =
Dep () -> SE ()
forall a. Dep a -> SE a
SE (Dep () -> SE ()) -> Dep () -> SE ()
forall a b. (a -> b) -> a -> b
$ DepT GE (Dep ()) -> Dep ()
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (DepT GE (Dep ()) -> Dep ()) -> DepT GE (Dep ()) -> Dep ()
forall a b. (a -> b) -> a -> b
$ E -> E -> Dep ()
forall {m :: * -> *}. Monad m => E -> E -> DepT m ()
f (E -> E -> Dep ()) -> DepT GE E -> DepT GE (E -> Dep ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b1 DepT GE (E -> Dep ()) -> DepT GE E -> DepT GE (Dep ())
forall a b. DepT GE (a -> b) -> DepT GE a -> DepT GE b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (GE E -> DepT GE E
forall (m :: * -> *) a. Monad m => m a -> DepT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (GE E -> DepT GE E) -> (Sig -> GE E) -> Sig -> DepT GE E
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sig -> GE E
unSig) Sig
b2
where
f :: E -> E -> DepT m ()
f E
a1 E
a2 = Name -> Spec1 -> [E] -> DepT m ()
forall (m :: * -> *). Monad m => Name -> Spec1 -> [E] -> DepT m ()
opcsDep_ Name
"zkwm" [(Rate
Xr,[Rate
Kr,Rate
Kr,Rate
Ir])] [E
a1,E
a2]