{-# LANGUAGE BangPatterns #-}
 
module Darcs.Util.StrictIdentity (
    StrictIdentity(..),
    runStrictIdentity)
    where
 
import Darcs.Prelude
import Control.Monad.Fix 
 
newtype StrictIdentity a =  StrictIdentity {forall a. StrictIdentity a -> a
runStrictIdentity_ :: a }
 
runStrictIdentity :: StrictIdentity a -> a 
runStrictIdentity :: forall a. StrictIdentity a -> a
runStrictIdentity !StrictIdentity a
ma = case StrictIdentity a -> a
forall a. StrictIdentity a -> a
runStrictIdentity_ (StrictIdentity a -> a) -> StrictIdentity a -> a
forall a b. (a -> b) -> a -> b
$! StrictIdentity a
ma of 
                            !a
res -> a
res  
{-# INLINE  runStrictIdentity #-} 
instance Applicative StrictIdentity where
    {-# INLINE pure #-}
    pure :: forall a. a -> StrictIdentity a
pure !a
a = a -> StrictIdentity a
forall a. a -> StrictIdentity a
StrictIdentity (a -> StrictIdentity a) -> a -> StrictIdentity a
forall a b. (a -> b) -> a -> b
$! a
a
    {-# INLINE (<*>) #-}
    <*> :: forall a b.
StrictIdentity (a -> b) -> StrictIdentity a -> StrictIdentity b
(<*>) StrictIdentity (a -> b)
a StrictIdentity a
b = do   a -> b
f <- StrictIdentity (a -> b)
a ; a
v <- StrictIdentity a
b ; b -> StrictIdentity b
forall a. a -> StrictIdentity a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> StrictIdentity b) -> b -> StrictIdentity b
forall a b. (a -> b) -> a -> b
$! (a -> b
f (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
$! a
v)
    
instance Functor StrictIdentity where
    {-# INLINE fmap  #-}
    fmap :: forall a b. (a -> b) -> StrictIdentity a -> StrictIdentity b
fmap !a -> b
f !StrictIdentity a
m = b -> StrictIdentity b
forall a. a -> StrictIdentity a
StrictIdentity (b -> StrictIdentity b) -> b -> StrictIdentity b
forall a b. (a -> b) -> a -> b
$! (a -> b
f (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
$! (StrictIdentity a -> a
forall a. StrictIdentity a -> a
runStrictIdentity StrictIdentity a
m))
 
instance Monad StrictIdentity where
    {-# INLINE return  #-}
    return :: forall a. a -> StrictIdentity a
return = a -> StrictIdentity a
forall a. a -> StrictIdentity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
    {-# INLINE  (>>=) #-}
    (!StrictIdentity a
m) >>= :: forall a b.
StrictIdentity a -> (a -> StrictIdentity b) -> StrictIdentity b
>>= (!a -> StrictIdentity b
k)  = a -> StrictIdentity b
k (a -> StrictIdentity b) -> a -> StrictIdentity b
forall a b. (a -> b) -> a -> b
$! StrictIdentity a -> a
forall a. StrictIdentity a -> a
runStrictIdentity  StrictIdentity a
m    
 
instance MonadFix StrictIdentity where
    {-# INLINE mfix  #-}
    mfix :: forall a. (a -> StrictIdentity a) -> StrictIdentity a
mfix !a -> StrictIdentity a
f = a -> StrictIdentity a
forall a. a -> StrictIdentity a
StrictIdentity (a -> StrictIdentity a) -> a -> StrictIdentity a
forall a b. (a -> b) -> a -> b
$! ((a -> a) -> a
forall a. (a -> a) -> a
fix  (StrictIdentity a -> a
forall a. StrictIdentity a -> a
runStrictIdentity (StrictIdentity a -> a) -> (a -> StrictIdentity a) -> a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> StrictIdentity a
f))