data-category-0.8.1: Category theory
LicenseBSD-style (see the file LICENSE)
Maintainersjoerd@w3future.com
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Category.NaturalTransformation

Description

 
Synopsis

Natural transformations

type (:~>) f g = forall c d. (c ~ Dom f, c ~ Dom g, d ~ Cod f, d ~ Cod g) => Nat c d f g #

f :~> g is a natural transformation from functor f to functor g.

type Component f g z = Cod f (f :% z) (g :% z) #

A component for an object z is an arrow from F z to G z.

(!) :: (Category c, Category d) => Nat c d f g -> c a b -> d (f :% a) (g :% b) infixl 9 #

'n ! a' returns the component for the object a of a natural transformation n. This can be generalized to any arrow (instead of just identity arrows).

o :: (Category c, Category d, Category e) => Nat d e j k -> Nat c d f g -> Nat c e (j :.: f) (k :.: g) #

Horizontal composition of natural transformations.

natId :: Functor f => f -> Nat (Dom f) (Cod f) f f #

The identity natural transformation of a functor.

srcF :: Nat c d f g -> f #

tgtF :: Nat c d f g -> g #

Functor category

data Nat :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where #

Natural transformations are built up of components, one for each object z in the domain category of f and g.

Constructors

Nat :: (Functor f, Functor g, c ~ Dom f, c ~ Dom g, d ~ Cod f, d ~ Cod g) => f -> g -> (forall z. Obj c z -> Component f g z) -> Nat c d f g 

Instances

Instances details
Category k => CartesianClosed (Presheaves k :: Type -> Type -> Type) #

The category of presheaves on a category C is cartesian closed for any C.

Instance details

Defined in Data.Category.CartesianClosed

Associated Types

type Exponential (Presheaves k) y z :: Kind k #

Methods

apply :: forall (y :: k0) (z :: k0). Obj (Presheaves k) y -> Obj (Presheaves k) z -> Presheaves k (BinaryProduct (Presheaves k) (Exponential (Presheaves k) y z) y) z #

tuple :: forall (y :: k0) (z :: k0). Obj (Presheaves k) y -> Obj (Presheaves k) z -> Presheaves k z (Exponential (Presheaves k) y (BinaryProduct (Presheaves k) z y)) #

(^^^) :: forall (z1 :: k0) (z2 :: k0) (y2 :: k0) (y1 :: k0). Presheaves k z1 z2 -> Presheaves k y2 y1 -> Presheaves k (Exponential (Presheaves k) y1 z1) (Exponential (Presheaves k) y2 z2) #

Category d => Category (Nat c d :: Type -> Type -> Type) #

Functor category D^C. Objects of D^C are functors from C to D. Arrows of D^C are natural transformations.

Instance details

Defined in Data.Category.NaturalTransformation

Methods

src :: forall (a :: k) (b :: k). Nat c d a b -> Obj (Nat c d) a #

tgt :: forall (a :: k) (b :: k). Nat c d a b -> Obj (Nat c d) b #

(.) :: forall (b :: k) (c0 :: k) (a :: k). Nat c d b c0 -> Nat c d a b -> Nat c d a c0 #

(Category c, HasBinaryCoproducts d) => HasBinaryCoproducts (Nat c d :: Type -> Type -> Type) #

The functor coproduct :+: is the binary coproduct in functor categories.

Instance details

Defined in Data.Category.Limit

Associated Types

type BinaryCoproduct (Nat c d) x y :: Kind k #

Methods

inj1 :: forall (x :: k) (y :: k). Obj (Nat c d) x -> Obj (Nat c d) y -> Nat c d x (BinaryCoproduct (Nat c d) x y) #

inj2 :: forall (x :: k) (y :: k). Obj (Nat c d) x -> Obj (Nat c d) y -> Nat c d y (BinaryCoproduct (Nat c d) x y) #

(|||) :: forall (x :: k) (a :: k) (y :: k). Nat c d x a -> Nat c d y a -> Nat c d (BinaryCoproduct (Nat c d) x y) a #

(+++) :: forall (a1 :: k) (b1 :: k) (a2 :: k) (b2 :: k). Nat c d a1 b1 -> Nat c d a2 b2 -> Nat c d (BinaryCoproduct (Nat c d) a1 a2) (BinaryCoproduct (Nat c d) b1 b2) #

(Category c, HasBinaryProducts d) => HasBinaryProducts (Nat c d :: Type -> Type -> Type) #

The functor product :*: is the binary product in functor categories.

Instance details

Defined in Data.Category.Limit

Associated Types

type BinaryProduct (Nat c d) x y :: Kind k #

Methods

proj1 :: forall (x :: k) (y :: k). Obj (Nat c d) x -> Obj (Nat c d) y -> Nat c d (BinaryProduct (Nat c d) x y) x #

proj2 :: forall (x :: k) (y :: k). Obj (Nat c d) x -> Obj (Nat c d) y -> Nat c d (BinaryProduct (Nat c d) x y) y #

(&&&) :: forall (a :: k) (x :: k) (y :: k). Nat c d a x -> Nat c d a y -> Nat c d a (BinaryProduct (Nat c d) x y) #

(***) :: forall (a1 :: k) (b1 :: k) (a2 :: k) (b2 :: k). Nat c d a1 b1 -> Nat c d a2 b2 -> Nat c d (BinaryProduct (Nat c d) a1 a2) (BinaryProduct (Nat c d) b1 b2) #

(Category c, HasInitialObject d) => HasInitialObject (Nat c d :: Type -> Type -> Type) #

The constant functor to the initial object is itself the initial object in its functor category.

Instance details

Defined in Data.Category.Limit

Associated Types

type InitialObject (Nat c d) :: Kind k #

Methods

initialObject :: Obj (Nat c d) (InitialObject (Nat c d)) #

initialize :: forall (a :: k). Obj (Nat c d) a -> Nat c d (InitialObject (Nat c d)) a #

(Category c, HasTerminalObject d) => HasTerminalObject (Nat c d :: Type -> Type -> Type) #

The constant functor to the terminal object is itself the terminal object in its functor category.

Instance details

Defined in Data.Category.Limit

Associated Types

type TerminalObject (Nat c d) :: Kind k #

Methods

terminalObject :: Obj (Nat c d) (TerminalObject (Nat c d)) #

terminate :: forall (a :: k). Obj (Nat c d) a -> Nat c d a (TerminalObject (Nat c d)) #

type Exponential (Presheaves k :: Type -> Type -> Type) (y :: Kind (Presheaves k)) (z :: Kind (Presheaves k)) # 
Instance details

Defined in Data.Category.CartesianClosed

type Exponential (Presheaves k :: Type -> Type -> Type) (y :: Kind (Presheaves k)) (z :: Kind (Presheaves k)) = PShExponential k y z
type InitialObject (Nat c d :: Type -> Type -> Type) # 
Instance details

Defined in Data.Category.Limit

type InitialObject (Nat c d :: Type -> Type -> Type) = Const c d (InitialObject d)
type TerminalObject (Nat c d :: Type -> Type -> Type) # 
Instance details

Defined in Data.Category.Limit

type TerminalObject (Nat c d :: Type -> Type -> Type) = Const c d (TerminalObject d)
type BinaryCoproduct (Nat c d :: Type -> Type -> Type) (x :: Kind (Nat c d)) (y :: Kind (Nat c d)) # 
Instance details

Defined in Data.Category.Limit

type BinaryCoproduct (Nat c d :: Type -> Type -> Type) (x :: Kind (Nat c d)) (y :: Kind (Nat c d)) = x :+: y
type BinaryProduct (Nat c d :: Type -> Type -> Type) (x :: Kind (Nat c d)) (y :: Kind (Nat c d)) # 
Instance details

Defined in Data.Category.Limit

type BinaryProduct (Nat c d :: Type -> Type -> Type) (x :: Kind (Nat c d)) (y :: Kind (Nat c d)) = x :*: y

type Endo k = Nat k k #

The category of endofunctors.

type Presheaves k = Nat (Op k) (->) #

type Profunctors c d = Nat (Op d :**: c) (->) #

Functor isomorphisms

compAssoc :: (Functor f, Functor g, Functor h, Dom f ~ Cod g, Dom g ~ Cod h) => f -> g -> h -> Nat (Dom h) (Cod f) ((f :.: g) :.: h) (f :.: (g :.: h)) #

compAssocInv :: (Functor f, Functor g, Functor h, Dom f ~ Cod g, Dom g ~ Cod h) => f -> g -> h -> Nat (Dom h) (Cod f) (f :.: (g :.: h)) ((f :.: g) :.: h) #

idPrecomp :: Functor f => f -> Nat (Dom f) (Cod f) (f :.: Id (Dom f)) f #

idPrecompInv :: Functor f => f -> Nat (Dom f) (Cod f) f (f :.: Id (Dom f)) #

idPostcomp :: Functor f => f -> Nat (Dom f) (Cod f) (Id (Cod f) :.: f) f #

idPostcompInv :: Functor f => f -> Nat (Dom f) (Cod f) f (Id (Cod f) :.: f) #

constPrecompIn :: Nat j d (f :.: Const j c x) g -> Nat j d (Const j d (f :% x)) g #

constPrecompOut :: Nat j d f (g :.: Const j c x) -> Nat j d f (Const j d (g :% x)) #

constPostcompIn :: Nat j d (Const k d x :.: f) g -> Nat j d (Const j d x) g #

constPostcompOut :: Nat j d f (Const k d x :.: g) -> Nat j d f (Const j d x) #

Related functors

data FunctorCompose (c :: * -> * -> *) (d :: * -> * -> *) (e :: * -> * -> *) #

Constructors

FunctorCompose 

Instances

Instances details
Category k => TensorProduct (EndoFunctorCompose k) #

Functor composition makes the category of endofunctors monoidal, with the identity functor as unit.

Instance details

Defined in Data.Category.Monoidal

Associated Types

type Unit (EndoFunctorCompose k) #

(Category c, Category d, Category e) => Functor (FunctorCompose c d e) #

Composition of functors is a functor.

Instance details

Defined in Data.Category.NaturalTransformation

Associated Types

type Dom (FunctorCompose c d e) :: Type -> Type -> Type #

type Cod (FunctorCompose c d e) :: Type -> Type -> Type #

type (FunctorCompose c d e) :% a #

Methods

(%) :: FunctorCompose c d e -> Dom (FunctorCompose c d e) a b -> Cod (FunctorCompose c d e) (FunctorCompose c d e :% a) (FunctorCompose c d e :% b) #

type Unit (EndoFunctorCompose k) # 
Instance details

Defined in Data.Category.Monoidal

type Dom (FunctorCompose c d e) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Dom (FunctorCompose c d e) = Nat d e :**: Nat c d
type Cod (FunctorCompose c d e) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Cod (FunctorCompose c d e) = Nat c e
type (FunctorCompose c d e) :% (f, g) # 
Instance details

Defined in Data.Category.NaturalTransformation

type (FunctorCompose c d e) :% (f, g) = f :.: g

type EndoFunctorCompose k = FunctorCompose k k k #

Composition of endofunctors is a functor.

type Precompose f e = FunctorCompose (Dom f) (Cod f) e :.: Tuple2 (Nat (Cod f) e) (Nat (Dom f) (Cod f)) f #

Precompose f e is the functor such that Precompose f e :% g = g :.: f, for functors g that compose with f and with codomain e.

pattern Precompose :: (Category e, Functor f) => f -> Precompose f e #

type Postcompose f c = FunctorCompose c (Dom f) (Cod f) :.: Tuple1 (Nat (Dom f) (Cod f)) (Nat c (Dom f)) f #

Postcompose f c is the functor such that Postcompose f c :% g = f :.: g, for functors g that compose with f and with domain c.

pattern Postcompose :: (Category e, Functor f) => f -> Postcompose f e #

data Wrap f h #

Constructors

Wrap f h 

Instances

Instances details
(Functor f, Functor h) => Functor (Wrap f h) #

Wrap f h is the functor such that Wrap f h :% g = f :.: g :.: h, for functors g that compose with f and h.

Instance details

Defined in Data.Category.NaturalTransformation

Associated Types

type Dom (Wrap f h) :: Type -> Type -> Type #

type Cod (Wrap f h) :: Type -> Type -> Type #

type (Wrap f h) :% a #

Methods

(%) :: Wrap f h -> Dom (Wrap f h) a b -> Cod (Wrap f h) (Wrap f h :% a) (Wrap f h :% b) #

type Dom (Wrap f h) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Dom (Wrap f h) = Nat (Cod h) (Dom f)
type Cod (Wrap f h) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Cod (Wrap f h) = Nat (Dom h) (Cod f)
type (Wrap f h) :% g # 
Instance details

Defined in Data.Category.NaturalTransformation

type (Wrap f h) :% g = (f :.: g) :.: h

data Apply (c1 :: * -> * -> *) (c2 :: * -> * -> *) #

Constructors

Apply 

Instances

Instances details
(Category c1, Category c2) => Functor (Apply c1 c2) #

Apply is a bifunctor, Apply :% (f, a) applies f to a, i.e. f :% a.

Instance details

Defined in Data.Category.NaturalTransformation

Associated Types

type Dom (Apply c1 c2) :: Type -> Type -> Type #

type Cod (Apply c1 c2) :: Type -> Type -> Type #

type (Apply c1 c2) :% a #

Methods

(%) :: Apply c1 c2 -> Dom (Apply c1 c2) a b -> Cod (Apply c1 c2) (Apply c1 c2 :% a) (Apply c1 c2 :% b) #

type Dom (Apply c1 c2) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Dom (Apply c1 c2) = Nat c2 c1 :**: c2
type Cod (Apply c1 c2) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Cod (Apply c1 c2) = c1
type (Apply c1 c2) :% (f, a) # 
Instance details

Defined in Data.Category.NaturalTransformation

type (Apply c1 c2) :% (f, a) = f :% a

data Tuple (c1 :: * -> * -> *) (c2 :: * -> * -> *) #

Constructors

Tuple 

Instances

Instances details
(Category c1, Category c2) => Functor (Tuple c1 c2) #

Tuple converts an object a to the functor Tuple1 a.

Instance details

Defined in Data.Category.NaturalTransformation

Associated Types

type Dom (Tuple c1 c2) :: Type -> Type -> Type #

type Cod (Tuple c1 c2) :: Type -> Type -> Type #

type (Tuple c1 c2) :% a #

Methods

(%) :: Tuple c1 c2 -> Dom (Tuple c1 c2) a b -> Cod (Tuple c1 c2) (Tuple c1 c2 :% a) (Tuple c1 c2 :% b) #

type Dom (Tuple c1 c2) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Dom (Tuple c1 c2) = c1
type Cod (Tuple c1 c2) # 
Instance details

Defined in Data.Category.NaturalTransformation

type Cod (Tuple c1 c2) = Nat c2 (c1 :**: c2)
type (Tuple c1 c2) :% a # 
Instance details

Defined in Data.Category.NaturalTransformation

type (Tuple c1 c2) :% a = Tuple1 c1 c2 a