module DeferredFolds.Defs.Unfoldr
where
import DeferredFolds.Prelude hiding (fold, reverse)
import DeferredFolds.Types
import qualified Data.Map.Strict as Map
import qualified Data.IntMap.Strict as IntMap
import qualified Data.HashMap.Strict as HashMap
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Short.Internal as ShortByteString
import qualified Data.Vector.Generic as GenericVector
deriving instance Functor Unfoldr
instance Applicative Unfoldr where
pure :: a -> Unfoldr a
pure a
x = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ a -> x -> x
step -> a -> x -> x
step a
x)
<*> :: Unfoldr (a -> b) -> Unfoldr a -> Unfoldr b
(<*>) = Unfoldr (a -> b) -> Unfoldr a -> Unfoldr b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Alternative Unfoldr where
empty :: Unfoldr a
empty = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((x -> x) -> (a -> x -> x) -> x -> x
forall a b. a -> b -> a
const x -> x
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id)
{-# INLINE (<|>) #-}
<|> :: Unfoldr a -> Unfoldr a -> Unfoldr a
(<|>) (Unfoldr forall x. (a -> x -> x) -> x -> x
left) (Unfoldr forall x. (a -> x -> x) -> x -> x
right) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ a -> x -> x
step x
init -> (a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
left a -> x -> x
step ((a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
right a -> x -> x
step x
init))
instance Monad Unfoldr where
return :: a -> Unfoldr a
return = a -> Unfoldr a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
{-# INLINE (>>=) #-}
>>= :: Unfoldr a -> (a -> Unfoldr b) -> Unfoldr b
(>>=) (Unfoldr forall x. (a -> x -> x) -> x -> x
left) a -> Unfoldr b
rightK =
(forall x. (b -> x -> x) -> x -> x) -> Unfoldr b
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (b -> x -> x) -> x -> x) -> Unfoldr b)
-> (forall x. (b -> x -> x) -> x -> x) -> Unfoldr b
forall a b. (a -> b) -> a -> b
$ \ b -> x -> x
step -> (a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
left ((a -> x -> x) -> x -> x) -> (a -> x -> x) -> x -> x
forall a b. (a -> b) -> a -> b
$ \ a
input -> case a -> Unfoldr b
rightK a
input of Unfoldr forall x. (b -> x -> x) -> x -> x
right -> (b -> x -> x) -> x -> x
forall x. (b -> x -> x) -> x -> x
right b -> x -> x
step
instance MonadPlus Unfoldr where
mzero :: Unfoldr a
mzero = Unfoldr a
forall (f :: * -> *) a. Alternative f => f a
empty
mplus :: Unfoldr a -> Unfoldr a -> Unfoldr a
mplus = Unfoldr a -> Unfoldr a -> Unfoldr a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
(<|>)
instance Semigroup (Unfoldr a) where
<> :: Unfoldr a -> Unfoldr a -> Unfoldr a
(<>) = Unfoldr a -> Unfoldr a -> Unfoldr a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
(<|>)
instance Monoid (Unfoldr a) where
mempty :: Unfoldr a
mempty = Unfoldr a
forall (f :: * -> *) a. Alternative f => f a
empty
mappend :: Unfoldr a -> Unfoldr a -> Unfoldr a
mappend = Unfoldr a -> Unfoldr a -> Unfoldr a
forall a. Semigroup a => a -> a -> a
(<>)
instance Foldable Unfoldr where
{-# INLINE foldMap #-}
foldMap :: (a -> m) -> Unfoldr a -> m
foldMap a -> m
fn (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (a -> m -> m) -> m -> m
forall x. (a -> x -> x) -> x -> x
unfoldr (m -> m -> m
forall a. Monoid a => a -> a -> a
mappend (m -> m -> m) -> (a -> m) -> a -> m -> m
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> m
fn) m
forall a. Monoid a => a
mempty
{-# INLINE foldr #-}
foldr :: (a -> b -> b) -> b -> Unfoldr a -> b
foldr a -> b -> b
step b
state (Unfoldr forall x. (a -> x -> x) -> x -> x
run) = (a -> b -> b) -> b -> b
forall x. (a -> x -> x) -> x -> x
run a -> b -> b
step b
state
foldl :: (b -> a -> b) -> b -> Unfoldr a -> b
foldl = (b -> a -> b) -> b -> Unfoldr a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl'
{-# INLINE foldl' #-}
foldl' :: (b -> a -> b) -> b -> Unfoldr a -> b
foldl' b -> a -> b
leftStep b
state (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (a -> (b -> b) -> b -> b) -> (b -> b) -> b -> b
forall x. (a -> x -> x) -> x -> x
unfoldr a -> (b -> b) -> b -> b
rightStep b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b
state where
rightStep :: a -> (b -> b) -> b -> b
rightStep a
element b -> b
k b
state = b -> b
k (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b -> a -> b
leftStep b
state a
element
instance Eq a => Eq (Unfoldr a) where
== :: Unfoldr a -> Unfoldr a -> Bool
(==) Unfoldr a
left Unfoldr a
right = Unfoldr a -> [Item (Unfoldr a)]
forall l. IsList l => l -> [Item l]
toList Unfoldr a
left [a] -> [a] -> Bool
forall a. Eq a => a -> a -> Bool
== Unfoldr a -> [Item (Unfoldr a)]
forall l. IsList l => l -> [Item l]
toList Unfoldr a
right
instance Show a => Show (Unfoldr a) where
show :: Unfoldr a -> String
show = [a] -> String
forall a. Show a => a -> String
show ([a] -> String) -> (Unfoldr a -> [a]) -> Unfoldr a -> String
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Unfoldr a -> [a]
forall l. IsList l => l -> [Item l]
toList
instance IsList (Unfoldr a) where
type Item (Unfoldr a) = a
fromList :: [Item (Unfoldr a)] -> Unfoldr a
fromList [Item (Unfoldr a)]
list = [a] -> Unfoldr a
forall (foldable :: * -> *) a.
Foldable foldable =>
foldable a -> Unfoldr a
foldable [a]
[Item (Unfoldr a)]
list
toList :: Unfoldr a -> [Item (Unfoldr a)]
toList = (a -> [a] -> [a]) -> [a] -> Unfoldr a -> [a]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (:) []
{-# INLINE fold #-}
fold :: Fold input output -> Unfoldr input -> output
fold :: Fold input output -> Unfoldr input -> output
fold (Fold x -> input -> x
step x
init x -> output
extract) = x -> output
extract (x -> output) -> (Unfoldr input -> x) -> Unfoldr input -> output
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (x -> input -> x) -> x -> Unfoldr input -> x
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' x -> input -> x
step x
init
{-# INLINE foldM #-}
foldM :: Monad m => FoldM m input output -> Unfoldr input -> m output
foldM :: FoldM m input output -> Unfoldr input -> m output
foldM (FoldM x -> input -> m x
step m x
init x -> m output
extract) (Unfoldr forall x. (input -> x -> x) -> x -> x
unfoldr) =
m x
init m x -> (x -> m x) -> m x
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (input -> (x -> m x) -> x -> m x) -> (x -> m x) -> x -> m x
forall x. (input -> x -> x) -> x -> x
unfoldr (\ input
input x -> m x
next x
state -> x -> input -> m x
step x
state input
input m x -> (x -> m x) -> m x
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= x -> m x
next) x -> m x
forall (m :: * -> *) a. Monad m => a -> m a
return m x -> (x -> m output) -> m output
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= x -> m output
extract
{-# INLINE foldable #-}
foldable :: Foldable foldable => foldable a -> Unfoldr a
foldable :: foldable a -> Unfoldr a
foldable foldable a
foldable = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ a -> x -> x
step x
init -> (a -> x -> x) -> x -> foldable a -> x
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr a -> x -> x
step x
init foldable a
foldable)
{-# INLINE filter #-}
filter :: (a -> Bool) -> Unfoldr a -> Unfoldr a
filter :: (a -> Bool) -> Unfoldr a -> Unfoldr a
filter a -> Bool
test (Unfoldr forall x. (a -> x -> x) -> x -> x
run) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ a -> x -> x
step -> (a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
run (\ a
element x
state -> if a -> Bool
test a
element then a -> x -> x
step a
element x
state else x
state))
{-# INLINE enumsFrom #-}
enumsFrom :: (Enum a) => a -> Unfoldr a
enumsFrom :: a -> Unfoldr a
enumsFrom a
from = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> let
loop :: a -> x
loop a
int = a -> x -> x
step a
int (a -> x
loop (a -> a
forall a. Enum a => a -> a
succ a
int))
in a -> x
loop a
from
{-# INLINE enumsInRange #-}
enumsInRange :: (Enum a, Ord a) => a -> a -> Unfoldr a
enumsInRange :: a -> a -> Unfoldr a
enumsInRange a
from a
to =
(forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init ->
let
loop :: a -> x
loop a
int =
if a
int a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to
then a -> x -> x
step a
int (a -> x
loop (a -> a
forall a. Enum a => a -> a
succ a
int))
else x
init
in a -> x
loop a
from
{-# INLINE intsFrom #-}
intsFrom :: Int -> Unfoldr Int
intsFrom :: Int -> Unfoldr Int
intsFrom = Int -> Unfoldr Int
forall a. Enum a => a -> Unfoldr a
enumsFrom
{-# INLINE intsInRange #-}
intsInRange :: Int -> Int -> Unfoldr Int
intsInRange :: Int -> Int -> Unfoldr Int
intsInRange = Int -> Int -> Unfoldr Int
forall a. (Enum a, Ord a) => a -> a -> Unfoldr a
enumsInRange
{-# INLINE mapAssocs #-}
mapAssocs :: Map key value -> Unfoldr (key, value)
mapAssocs :: Map key value -> Unfoldr (key, value)
mapAssocs Map key value
map =
(forall x. ((key, value) -> x -> x) -> x -> x)
-> Unfoldr (key, value)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ (key, value) -> x -> x
step x
init -> (key -> value -> x -> x) -> x -> Map key value -> x
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
Map.foldrWithKey (\ key
key value
value x
state -> (key, value) -> x -> x
step (key
key, value
value) x
state) x
init Map key value
map)
{-# INLINE intMapAssocs #-}
intMapAssocs :: IntMap value -> Unfoldr (Int, value)
intMapAssocs :: IntMap value -> Unfoldr (Int, value)
intMapAssocs IntMap value
intMap =
(forall x. ((Int, value) -> x -> x) -> x -> x)
-> Unfoldr (Int, value)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ (Int, value) -> x -> x
step x
init -> (Int -> value -> x -> x) -> x -> IntMap value -> x
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
IntMap.foldrWithKey (\ Int
key value
value x
state -> (Int, value) -> x -> x
step (Int
key, value
value) x
state) x
init IntMap value
intMap)
{-# INLINE hashMapKeys #-}
hashMapKeys :: HashMap key value -> Unfoldr key
hashMapKeys :: HashMap key value -> Unfoldr key
hashMapKeys HashMap key value
hashMap =
(forall x. (key -> x -> x) -> x -> x) -> Unfoldr key
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ key -> x -> x
step x
init -> (key -> value -> x -> x) -> x -> HashMap key value -> x
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
HashMap.foldrWithKey (\ key
key value
_ x
state -> key -> x -> x
step key
key x
state) x
init HashMap key value
hashMap)
{-# INLINE hashMapAssocs #-}
hashMapAssocs :: HashMap key value -> Unfoldr (key, value)
hashMapAssocs :: HashMap key value -> Unfoldr (key, value)
hashMapAssocs HashMap key value
hashMap =
(forall x. ((key, value) -> x -> x) -> x -> x)
-> Unfoldr (key, value)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ (key, value) -> x -> x
step x
init -> (key -> value -> x -> x) -> x -> HashMap key value -> x
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
HashMap.foldrWithKey (\ key
key value
value x
state -> (key, value) -> x -> x
step (key
key, value
value) x
state) x
init HashMap key value
hashMap)
{-# INLINE hashMapAt #-}
hashMapAt :: (Hashable key, Eq key) => HashMap key value -> key -> Unfoldr value
hashMapAt :: HashMap key value -> key -> Unfoldr value
hashMapAt HashMap key value
hashMap key
key = Maybe value -> Unfoldr value
forall (foldable :: * -> *) a.
Foldable foldable =>
foldable a -> Unfoldr a
foldable (key -> HashMap key value -> Maybe value
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup key
key HashMap key value
hashMap)
{-# INLINE hashMapValue #-}
{-# DEPRECATED hashMapValue "Use 'hashMapAt' instead" #-}
hashMapValue :: (Hashable key, Eq key) => key -> HashMap key value -> Unfoldr value
hashMapValue :: key -> HashMap key value -> Unfoldr value
hashMapValue key
key = Maybe value -> Unfoldr value
forall (foldable :: * -> *) a.
Foldable foldable =>
foldable a -> Unfoldr a
foldable (Maybe value -> Unfoldr value)
-> (HashMap key value -> Maybe value)
-> HashMap key value
-> Unfoldr value
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. key -> HashMap key value -> Maybe value
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup key
key
{-# INLINE hashMapValues #-}
hashMapValues :: (Hashable key, Eq key) => HashMap key value -> Unfoldr key -> Unfoldr value
hashMapValues :: HashMap key value -> Unfoldr key -> Unfoldr value
hashMapValues HashMap key value
hashMap Unfoldr key
keys = Unfoldr key
keys Unfoldr key -> (key -> Unfoldr value) -> Unfoldr value
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (key -> HashMap key value -> Unfoldr value)
-> HashMap key value -> key -> Unfoldr value
forall a b c. (a -> b -> c) -> b -> a -> c
flip key -> HashMap key value -> Unfoldr value
forall key value.
(Hashable key, Eq key) =>
key -> HashMap key value -> Unfoldr value
hashMapValue HashMap key value
hashMap
{-# INLINE byteStringBytes #-}
byteStringBytes :: ByteString -> Unfoldr Word8
byteStringBytes :: ByteString -> Unfoldr Word8
byteStringBytes ByteString
bs = (forall x. (Word8 -> x -> x) -> x -> x) -> Unfoldr Word8
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr (\ Word8 -> x -> x
step x
init -> (Word8 -> x -> x) -> x -> ByteString -> x
forall a. (Word8 -> a -> a) -> a -> ByteString -> a
ByteString.foldr Word8 -> x -> x
step x
init ByteString
bs)
{-# INLINE shortByteStringBytes #-}
shortByteStringBytes :: ShortByteString -> Unfoldr Word8
shortByteStringBytes :: ShortByteString -> Unfoldr Word8
shortByteStringBytes (ShortByteString.SBS ByteArray#
ba#) = PrimArray Word8 -> Unfoldr Word8
forall prim. Prim prim => PrimArray prim -> Unfoldr prim
primArray (ByteArray# -> PrimArray Word8
forall a. ByteArray# -> PrimArray a
PrimArray ByteArray#
ba#)
{-# INLINE primArray #-}
primArray :: (Prim prim) => PrimArray prim -> Unfoldr prim
primArray :: PrimArray prim -> Unfoldr prim
primArray PrimArray prim
ba = (forall x. (prim -> x -> x) -> x -> x) -> Unfoldr prim
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (prim -> x -> x) -> x -> x) -> Unfoldr prim)
-> (forall x. (prim -> x -> x) -> x -> x) -> Unfoldr prim
forall a b. (a -> b) -> a -> b
$ \ prim -> x -> x
f x
z -> (prim -> x -> x) -> x -> PrimArray prim -> x
forall a b. Prim a => (a -> b -> b) -> b -> PrimArray a -> b
foldrPrimArray prim -> x -> x
f x
z PrimArray prim
ba
{-# INLINE primArrayWithIndices #-}
primArrayWithIndices :: (Prim prim) => PrimArray prim -> Unfoldr (Int, prim)
primArrayWithIndices :: PrimArray prim -> Unfoldr (Int, prim)
primArrayWithIndices PrimArray prim
pa = (forall x. ((Int, prim) -> x -> x) -> x -> x)
-> Unfoldr (Int, prim)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. ((Int, prim) -> x -> x) -> x -> x)
-> Unfoldr (Int, prim))
-> (forall x. ((Int, prim) -> x -> x) -> x -> x)
-> Unfoldr (Int, prim)
forall a b. (a -> b) -> a -> b
$ \ (Int, prim) -> x -> x
step x
state -> let
!size :: Int
size = PrimArray prim -> Int
forall a. Prim a => PrimArray a -> Int
sizeofPrimArray PrimArray prim
pa
loop :: Int -> x
loop Int
index = if Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
size
then (Int, prim) -> x -> x
step (Int
index, PrimArray prim -> Int -> prim
forall a. Prim a => PrimArray a -> Int -> a
indexPrimArray PrimArray prim
pa Int
index) (Int -> x
loop (Int -> Int
forall a. Enum a => a -> a
succ Int
index))
else x
state
in Int -> x
loop Int
0
{-# INLINE vector #-}
vector :: GenericVector.Vector vector a => vector a -> Unfoldr a
vector :: vector a -> Unfoldr a
vector vector a
vector = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
state -> (a -> x -> x) -> x -> vector a -> x
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> b) -> b -> v a -> b
GenericVector.foldr a -> x -> x
step x
state vector a
vector
{-# INLINE vectorWithIndices #-}
vectorWithIndices :: GenericVector.Vector vector a => vector a -> Unfoldr (Int, a)
vectorWithIndices :: vector a -> Unfoldr (Int, a)
vectorWithIndices vector a
vector = (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a))
-> (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a b. (a -> b) -> a -> b
$ \ (Int, a) -> x -> x
step x
state -> (Int -> a -> x -> x) -> x -> vector a -> x
forall (v :: * -> *) a b.
Vector v a =>
(Int -> a -> b -> b) -> b -> v a -> b
GenericVector.ifoldr (\ Int
index a
a -> (Int, a) -> x -> x
step (Int
index, a
a)) x
state vector a
vector
binaryDigits :: Integral a => a -> Unfoldr a
binaryDigits :: a -> Unfoldr a
binaryDigits = Unfoldr a -> Unfoldr a
forall a. Unfoldr a -> Unfoldr a
reverse (Unfoldr a -> Unfoldr a) -> (a -> Unfoldr a) -> a -> Unfoldr a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Unfoldr a
forall a. Integral a => a -> Unfoldr a
reverseBinaryDigits
reverseBinaryDigits :: Integral a => a -> Unfoldr a
reverseBinaryDigits :: a -> Unfoldr a
reverseBinaryDigits = a -> a -> Unfoldr a
forall a. Integral a => a -> a -> Unfoldr a
reverseDigits a
2
octalDigits :: Integral a => a -> Unfoldr a
octalDigits :: a -> Unfoldr a
octalDigits = Unfoldr a -> Unfoldr a
forall a. Unfoldr a -> Unfoldr a
reverse (Unfoldr a -> Unfoldr a) -> (a -> Unfoldr a) -> a -> Unfoldr a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Unfoldr a
forall a. Integral a => a -> Unfoldr a
reverseOctalDigits
reverseOctalDigits :: Integral a => a -> Unfoldr a
reverseOctalDigits :: a -> Unfoldr a
reverseOctalDigits = a -> a -> Unfoldr a
forall a. Integral a => a -> a -> Unfoldr a
reverseDigits a
8
decimalDigits :: Integral a => a -> Unfoldr a
decimalDigits :: a -> Unfoldr a
decimalDigits = Unfoldr a -> Unfoldr a
forall a. Unfoldr a -> Unfoldr a
reverse (Unfoldr a -> Unfoldr a) -> (a -> Unfoldr a) -> a -> Unfoldr a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Unfoldr a
forall a. Integral a => a -> Unfoldr a
reverseDecimalDigits
reverseDecimalDigits :: Integral a => a -> Unfoldr a
reverseDecimalDigits :: a -> Unfoldr a
reverseDecimalDigits = a -> a -> Unfoldr a
forall a. Integral a => a -> a -> Unfoldr a
reverseDigits a
10
hexadecimalDigits :: Integral a => a -> Unfoldr a
hexadecimalDigits :: a -> Unfoldr a
hexadecimalDigits = Unfoldr a -> Unfoldr a
forall a. Unfoldr a -> Unfoldr a
reverse (Unfoldr a -> Unfoldr a) -> (a -> Unfoldr a) -> a -> Unfoldr a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Unfoldr a
forall a. Integral a => a -> Unfoldr a
reverseHexadecimalDigits
reverseHexadecimalDigits :: Integral a => a -> Unfoldr a
reverseHexadecimalDigits :: a -> Unfoldr a
reverseHexadecimalDigits = a -> a -> Unfoldr a
forall a. Integral a => a -> a -> Unfoldr a
reverseDigits a
16
reverseDigits :: Integral a => a -> a -> Unfoldr a
reverseDigits :: a -> a -> Unfoldr a
reverseDigits a
radix a
x = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> let
loop :: a -> x
loop a
x = case a -> a -> (a, a)
forall a. Integral a => a -> a -> (a, a)
divMod a
x a
radix of
(a
next, a
digit) -> a -> x -> x
step a
digit (if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
0 then x
init else a -> x
loop a
next)
in a -> x
loop a
x
reverse :: Unfoldr a -> Unfoldr a
reverse :: Unfoldr a -> Unfoldr a
reverse (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step -> (a -> (x -> x) -> x -> x) -> (x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
unfoldr (\ a
a x -> x
f -> x -> x
f (x -> x) -> (x -> x) -> x -> x
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> x -> x
step a
a) x -> x
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
zipWithIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithIndex (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a))
-> (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a b. (a -> b) -> a -> b
$ \ (Int, a) -> x -> x
indexedStep x
indexedState -> (a -> (Int -> x) -> Int -> x) -> (Int -> x) -> Int -> x
forall x. (a -> x -> x) -> x -> x
unfoldr
(\ a
a Int -> x
nextStateByIndex Int
index -> (Int, a) -> x -> x
indexedStep (Int
index, a
a) (Int -> x
nextStateByIndex (Int -> Int
forall a. Enum a => a -> a
succ Int
index)))
(x -> Int -> x
forall a b. a -> b -> a
const x
indexedState)
Int
0
{-# DEPRECATED zipWithReverseIndex "This function builds up stack. Use 'zipWithIndex' instead." #-}
zipWithReverseIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithReverseIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithReverseIndex (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a))
-> (forall x. ((Int, a) -> x -> x) -> x -> x) -> Unfoldr (Int, a)
forall a b. (a -> b) -> a -> b
$ \ (Int, a) -> x -> x
step x
init -> (Int, x) -> x
forall a b. (a, b) -> b
snd ((Int, x) -> x) -> (Int, x) -> x
forall a b. (a -> b) -> a -> b
$ (a -> (Int, x) -> (Int, x)) -> (Int, x) -> (Int, x)
forall x. (a -> x -> x) -> x -> x
unfoldr
(\ a
a (Int
index, x
state) -> (Int -> Int
forall a. Enum a => a -> a
succ Int
index, (Int, a) -> x -> x
step (Int
index, a
a) x
state))
(Int
0, x
init)
setBitIndices :: FiniteBits a => a -> Unfoldr Int
setBitIndices :: a -> Unfoldr Int
setBitIndices a
a = let
!size :: Int
size = a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
a
in (forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int)
-> (forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int
forall a b. (a -> b) -> a -> b
$ \ Int -> x -> x
step x
state -> let
loop :: Int -> x
loop !Int
index = if Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
size
then if a -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit a
a Int
index
then Int -> x -> x
step Int
index (Int -> x
loop (Int -> Int
forall a. Enum a => a -> a
succ Int
index))
else Int -> x
loop (Int -> Int
forall a. Enum a => a -> a
succ Int
index)
else x
state
in Int -> x
loop Int
0
unsetBitIndices :: FiniteBits a => a -> Unfoldr Int
unsetBitIndices :: a -> Unfoldr Int
unsetBitIndices a
a = let
!size :: Int
size = a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
a
in (forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int)
-> (forall x. (Int -> x -> x) -> x -> x) -> Unfoldr Int
forall a b. (a -> b) -> a -> b
$ \ Int -> x -> x
step x
state -> let
loop :: Int -> x
loop !Int
index = if Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
size
then if a -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit a
a Int
index
then Int -> x
loop (Int -> Int
forall a. Enum a => a -> a
succ Int
index)
else Int -> x -> x
step Int
index (Int -> x
loop (Int -> Int
forall a. Enum a => a -> a
succ Int
index))
else x
state
in Int -> x
loop Int
0
take :: Int -> Unfoldr a -> Unfoldr a
take :: Int -> Unfoldr a -> Unfoldr a
take Int
amount (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> (a -> (Int -> x) -> Int -> x) -> (Int -> x) -> Int -> x
forall x. (a -> x -> x) -> x -> x
unfoldr
(\ a
a Int -> x
nextState Int
index -> if Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
amount
then a -> x -> x
step a
a (Int -> x
nextState (Int -> Int
forall a. Enum a => a -> a
succ Int
index))
else x
init)
(x -> Int -> x
forall a b. a -> b -> a
const x
init)
Int
0
takeWhile :: (a -> Bool) -> Unfoldr a -> Unfoldr a
takeWhile :: (a -> Bool) -> Unfoldr a -> Unfoldr a
takeWhile a -> Bool
predicate (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> (a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
unfoldr
(\ a
a x
nextState -> if a -> Bool
predicate a
a
then a -> x -> x
step a
a x
nextState
else x
init)
x
init
cons :: a -> Unfoldr a -> Unfoldr a
cons :: a -> Unfoldr a -> Unfoldr a
cons a
a (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> a -> x -> x
step a
a ((a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
unfoldr a -> x -> x
step x
init)
snoc :: a -> Unfoldr a -> Unfoldr a
snoc :: a -> Unfoldr a -> Unfoldr a
snoc a
a (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) = (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init -> (a -> x -> x) -> x -> x
forall x. (a -> x -> x) -> x -> x
unfoldr a -> x -> x
step (a -> x -> x
step a
a x
init)
{-# INLINE intersperse #-}
intersperse :: a -> Unfoldr a -> Unfoldr a
intersperse :: a -> Unfoldr a -> Unfoldr a
intersperse a
sep (Unfoldr forall x. (a -> x -> x) -> x -> x
unfoldr) =
(forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a. (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
Unfoldr ((forall x. (a -> x -> x) -> x -> x) -> Unfoldr a)
-> (forall x. (a -> x -> x) -> x -> x) -> Unfoldr a
forall a b. (a -> b) -> a -> b
$ \ a -> x -> x
step x
init ->
(a -> (Bool -> x) -> Bool -> x) -> (Bool -> x) -> Bool -> x
forall x. (a -> x -> x) -> x -> x
unfoldr
(\ a
a Bool -> x
next Bool
first ->
if Bool
first
then a -> x -> x
step a
a (Bool -> x
next Bool
False)
else a -> x -> x
step a
sep (a -> x -> x
step a
a (Bool -> x
next Bool
False)))
(x -> Bool -> x
forall a b. a -> b -> a
const x
init)
Bool
True