dependent-monoidal-map-0.1.1.5: Dependent map that uses semigroup mappend
Safe HaskellNone
LanguageHaskell2010

Data.Dependent.Map.Monoidal

Synopsis

Documentation

newtype MonoidalDMap (f :: k -> Type) (g :: k -> Type) Source #

Constructors

MonoidalDMap 

Fields

Instances

Instances details
FromJSON (DMap f g) => FromJSON (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

ToJSON (DMap f g) => ToJSON (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

(Has' Semigroup f g, GCompare f) => Monoid (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

(Has' Semigroup f g, GCompare f) => Semigroup (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

(<>) :: MonoidalDMap f g -> MonoidalDMap f g -> MonoidalDMap f g #

sconcat :: NonEmpty (MonoidalDMap f g) -> MonoidalDMap f g #

stimes :: Integral b => b -> MonoidalDMap f g -> MonoidalDMap f g #

(GCompare k2, Read (FakeDSum k2 f)) => Read (MonoidalDMap k2 f) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Show (FakeDSum k2 f) => Show (MonoidalDMap k2 f) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

showsPrec :: Int -> MonoidalDMap k2 f -> ShowS #

show :: MonoidalDMap k2 f -> String #

showList :: [MonoidalDMap k2 f] -> ShowS #

(Has' Eq f g, GCompare f) => Eq (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

(==) :: MonoidalDMap f g -> MonoidalDMap f g -> Bool #

(/=) :: MonoidalDMap f g -> MonoidalDMap f g -> Bool #

(Has' Eq f g, Has' Ord f g, GCompare f) => Ord (MonoidalDMap f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

newtype FakeDSum (f :: k -> Type) (g :: k -> Type) Source #

Constructors

FakeDSum 

Fields

Instances

Instances details
(GRead f, Has' Read f g) => Read (FakeDSum f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

(ForallF Show f, Has' Show f g) => Show (FakeDSum f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

showsPrec :: Int -> FakeDSum f g -> ShowS #

show :: FakeDSum f g -> String #

showList :: [FakeDSum f g] -> ShowS #

(GEq f, Has' Eq f g) => Eq (FakeDSum f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

(==) :: FakeDSum f g -> FakeDSum f g -> Bool #

(/=) :: FakeDSum f g -> FakeDSum f g -> Bool #

(GCompare f, Has' Eq f g, Has' Ord f g) => Ord (FakeDSum f g) Source # 
Instance details

Defined in Data.Dependent.Map.Monoidal

Methods

compare :: FakeDSum f g -> FakeDSum f g -> Ordering #

(<) :: FakeDSum f g -> FakeDSum f g -> Bool #

(<=) :: FakeDSum f g -> FakeDSum f g -> Bool #

(>) :: FakeDSum f g -> FakeDSum f g -> Bool #

(>=) :: FakeDSum f g -> FakeDSum f g -> Bool #

max :: FakeDSum f g -> FakeDSum f g -> FakeDSum f g #

min :: FakeDSum f g -> FakeDSum f g -> FakeDSum f g #

empty :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f Source #

O(1). The empty map.

empty      == fromList []
size empty == 0

singleton :: forall {k1} k2 (v :: k1) f. k2 v -> f v -> MonoidalDMap k2 f Source #

O(1). A map with a single element.

singleton 1 'a'        == fromList [(1, 'a')]
size (singleton 1 'a') == 1

null :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Bool Source #

O(1). Is the map empty?

size :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Int Source #

O(1). The number of elements in the map.

lookup :: forall {k1} k2 f (v :: k1). GCompare k2 => k2 v -> MonoidalDMap k2 f -> Maybe (f v) Source #

O(log n). Lookup the value at a key in the map.

The function will return the corresponding value as (Just value), or Nothing if the key isn't in the map.

deleteFindMin :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> (DSum k2 f, MonoidalDMap k2 f) Source #

O(log n). Delete and find the minimal element.

deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")])
deleteFindMin                                            Error: can not return the minimal element of an empty map

minViewWithKey :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Maybe (DSum k2 f, MonoidalDMap k2 f) Source #

O(log n). Retrieves the minimal (key :=> value) entry of the map, and the map stripped of that element, or Nothing if passed an empty map.

maxViewWithKey :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Maybe (DSum k2 f, MonoidalDMap k2 f) Source #

O(log n). Retrieves the maximal (key :=> value) entry of the map, and the map stripped of that element, or Nothing if passed an empty map.

deleteFindMax :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> (DSum k2 f, MonoidalDMap k2 f) Source #

O(log n). Delete and find the maximal element.

deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")])
deleteFindMax empty                                      Error: can not return the maximal element of an empty map

member :: forall {k1} k2 (a :: k1) (f :: k1 -> Type). GCompare k2 => k2 a -> MonoidalDMap k2 f -> Bool Source #

O(log n). Is the key a member of the map? See also notMember.

notMember :: forall {k1} k2 (v :: k1) (f :: k1 -> Type). GCompare k2 => k2 v -> MonoidalDMap k2 f -> Bool Source #

O(log n). Is the key not a member of the map? See also member.

find :: forall {k1} k2 (v :: k1) f. GCompare k2 => k2 v -> MonoidalDMap k2 f -> f v Source #

O(log n). Find the value at a key. Calls error when the element can not be found. Consider using lookup when elements may not be present.

findWithDefault :: forall {k1} k2 f (v :: k1). GCompare k2 => f v -> k2 v -> MonoidalDMap k2 f -> f v Source #

O(log n). The expression (findWithDefault def k map) returns the value at key k or returns default value def when the key is not in the map.

insert :: forall {k1} k2 f (v :: k1). GCompare k2 => k2 v -> f v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Insert a new key and value in the map. If the key is already present in the map, the associated value is replaced with the supplied value. insert is equivalent to insertWith const.

insertWith :: forall {k1} k2 f (v :: k1). GCompare k2 => (f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Insert with a function, combining new value and old value. insertWith f key value mp will insert the entry key :=> value into mp if key does not exist in the map. If the key does exist, the function will insert the entry key :=> f new_value old_value.

insertWith' :: forall {k1} k2 f (v :: k1). GCompare k2 => (f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

Same as insertWith, but the combining function is applied strictly. This is often the most desirable behavior.

insertWithKey :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Insert with a function, combining key, new value and old value. insertWithKey f key value mp will insert the entry key :=> value into mp if key does not exist in the map. If the key does exist, the function will insert the entry key :=> f key new_value old_value. Note that the key passed to f is the same key passed to insertWithKey.

insertWithKey' :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

Same as insertWithKey, but the combining function is applied strictly.

insertLookupWithKey :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> (Maybe (f v), MonoidalDMap k2 f) Source #

O(log n). Combines insert operation with old value retrieval. The expression (insertLookupWithKey f k x map) is a pair where the first element is equal to (lookup k map) and the second element equal to (insertWithKey f k x map).

insertLookupWithKey' :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> f v -> f v) -> k2 v -> f v -> MonoidalDMap k2 f -> (Maybe (f v), MonoidalDMap k2 f) Source #

O(log n). A strict version of insertLookupWithKey.

delete :: forall {k1} k2 (f :: k1 -> Type) (v :: k1). GCompare k2 => k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Delete a key and its value from the map. When the key is not a member of the map, the original map is returned.

adjust :: forall {k1} k2 f (v :: k1). GCompare k2 => (f v -> f v) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Update a value at a specific key with the result of the provided function. When the key is not a member of the map, the original map is returned.

adjustWithKey :: forall {k1} k2 (v :: k1) f. GCompare k2 => (k2 v -> f v -> f v) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.

adjustWithKey' :: forall {k1} k2 (v :: k1) f. GCompare k2 => (k2 v -> f v -> f v) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). A strict version of adjustWithKey.

update :: forall {k1} k2 f (v :: k1). GCompare k2 => (f v -> Maybe (f v)) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). The expression (update f k map) updates the value x at k (if it is in the map). If (f x) is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new value y.

updateWithKey :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> Maybe (f v)) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). The expression (updateWithKey f k map) updates the value x at k (if it is in the map). If (f k x) is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new value y.

updateLookupWithKey :: forall {k1} k2 f (v :: k1). GCompare k2 => (k2 v -> f v -> Maybe (f v)) -> k2 v -> MonoidalDMap k2 f -> (Maybe (f v), MonoidalDMap k2 f) Source #

O(log n). Lookup and update. See also updateWithKey. The function returns changed value, if it is updated. Returns the original key value if the map entry is deleted.

alter :: forall {k1} k2 f (v :: k1). GCompare k2 => (Maybe (f v) -> Maybe (f v)) -> k2 v -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). The expression (alter f k map) alters the value x at k, or absence thereof. alter can be used to insert, delete, or update a value in a Map. In short : lookup k (alter f k m) = f (lookup k m).

findIndex :: forall {k1} k2 (v :: k1) (f :: k1 -> Type). GCompare k2 => k2 v -> MonoidalDMap k2 f -> Int Source #

O(log n). Return the index of a key. The index is a number from 0 up to, but not including, the size of the map. Calls error when the key is not a member of the map.

lookupIndex :: forall {k1} k2 (f :: k1 -> Type) (v :: k1). GCompare k2 => k2 v -> MonoidalDMap k2 f -> Maybe Int Source #

O(log n). Lookup the index of a key. The index is a number from 0 up to, but not including, the size of the map.

elemAt :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). Int -> MonoidalDMap k2 f -> DSum k2 f Source #

O(log n). Retrieve an element by index. Calls error when an invalid index is used.

updateAt :: (forall (v :: k1). k2 v -> f v -> Maybe (f v)) -> Int -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Update the element at index. Does nothing when an invalid index is used.

deleteAt :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). Int -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Delete the element at index. Defined as (deleteAt i map = updateAt (k x -> Nothing) i map).

findMin :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> DSum k2 f Source #

O(log n). The minimal key of the map. Calls error is the map is empty.

lookupMin :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Maybe (DSum k2 f) Source #

findMax :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> DSum k2 f Source #

O(log n). The maximal key of the map. Calls error is the map is empty.

lookupMax :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> Maybe (DSum k2 f) Source #

deleteMin :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Delete the minimal key. Returns an empty map if the map is empty.

deleteMax :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Delete the maximal key. Returns an empty map if the map is empty.

updateMinWithKey :: (forall (v :: k1). k2 v -> f v -> Maybe (f v)) -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Update the value at the minimal key.

updateMaxWithKey :: (forall (v :: k1). k2 v -> f v -> Maybe (f v)) -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(log n). Update the value at the maximal key.

unionsWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> f v -> f v) -> [MonoidalDMap k2 f] -> MonoidalDMap k2 f Source #

The union of a list of maps, with a combining operation: (unionsWithKey f == foldl (unionWithKey f) empty).

unionWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> f v -> f v) -> MonoidalDMap k2 f -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(n+m). Union with a combining function.

difference :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type) (g :: k1 -> Type). GCompare k2 => MonoidalDMap k2 f -> MonoidalDMap k2 g -> MonoidalDMap k2 f Source #

O(m * log (n/m + 1)), m <= n. Difference of two maps. Return elements of the first map not existing in the second map.

differenceWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> g v -> Maybe (f v)) -> MonoidalDMap k2 f -> MonoidalDMap k2 g -> MonoidalDMap k2 f Source #

O(n+m). Difference with a combining function. When two equal keys are encountered, the combining function is applied to the key and both values. If it returns Nothing, the element is discarded (proper set difference). If it returns (Just y), the element is updated with a new value y.

intersectionWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> g v -> h v) -> MonoidalDMap k2 f -> MonoidalDMap k2 g -> MonoidalDMap k2 h Source #

O(m * log (n/m + 1), m <= n. Intersection with a combining function.

isSubmapOf :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). (GCompare k2, Has' Eq k2 f) => MonoidalDMap k2 f -> MonoidalDMap k2 f -> Bool Source #

O(n+m). This function is defined as (isSubmapOf = isSubmapOfBy eqTagged)).

isSubmapOfBy :: GCompare k2 => (forall (v :: k1). k2 v -> k2 v -> f v -> g v -> Bool) -> MonoidalDMap k2 f -> MonoidalDMap k2 g -> Bool Source #

O(n+m). The expression (isSubmapOfBy f t1 t2) returns True if all keys in t1 are in tree t2, and when f returns True when applied to their respective keys and values.

isProperSubmapOf :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). (GCompare k2, Has' Eq k2 f) => MonoidalDMap k2 f -> MonoidalDMap k2 f -> Bool Source #

O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined as (isProperSubmapOf = isProperSubmapOfBy eqTagged).

isProperSubmapOfBy :: GCompare k2 => (forall (v :: k1). k2 v -> k2 v -> f v -> g v -> Bool) -> MonoidalDMap k2 f -> MonoidalDMap k2 g -> Bool Source #

O(n+m). Is this a proper submap? (ie. a submap but not equal). The expression (isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are not equal, all keys in m1 are in m2, and when f returns True when applied to their respective keys and values.

filterWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> Bool) -> MonoidalDMap k2 f -> MonoidalDMap k2 f Source #

O(n). Filter all keys/values that satisfy the predicate.

partitionWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> Bool) -> MonoidalDMap k2 f -> (MonoidalDMap k2 f, MonoidalDMap k2 f) Source #

O(n). Partition the map according to a predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split.

mapMaybeWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> Maybe (g v)) -> MonoidalDMap k2 f -> MonoidalDMap k2 g Source #

O(n). Map keys/values and collect the Just results.

mapEitherWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> Either (g v) (h v)) -> MonoidalDMap k2 f -> (MonoidalDMap k2 g, MonoidalDMap k2 h) Source #

O(n). Map keys/values and separate the Left and Right results.

map :: forall {k1} f g (k2 :: k1 -> Type). (forall (v :: k1). f v -> g v) -> MonoidalDMap k2 f -> MonoidalDMap k2 g Source #

O(n). Map a function over all values in the map.

mapWithKey :: (forall (v :: k1). k2 v -> f v -> g v) -> MonoidalDMap k2 f -> MonoidalDMap k2 g Source #

O(n). Map a function over all values in the map.

traverseWithKey :: forall {k1} t k2 f g. Applicative t => (forall (v :: k1). k2 v -> f v -> t (g v)) -> MonoidalDMap k2 f -> t (MonoidalDMap k2 g) Source #

O(n). traverseWithKey f m == fromList $ traverse ((k, v) -> (,) k $ f k v) (toList m) That is, behaves exactly like a regular traverse except that the traversing function also has access to the key associated with a value.

mapAccumLWithKey :: (forall (v :: k1). a -> k2 v -> f v -> (a, g v)) -> a -> MonoidalDMap k2 f -> (a, MonoidalDMap k2 g) Source #

O(n). The function mapAccumLWithKey threads an accumulating argument throught the map in ascending order of keys.

mapAccumRWithKey :: (forall (v :: k1). a -> k2 v -> f v -> (a, g v)) -> a -> MonoidalDMap k2 f -> (a, MonoidalDMap k2 g) Source #

O(n). The function mapAccumRWithKey threads an accumulating argument through the map in descending order of keys.

mapKeysWith :: GCompare k2 => (forall (v :: k). k2 v -> f v -> f v -> f v) -> (forall (v :: k). k1 v -> k2 v) -> MonoidalDMap k1 f -> MonoidalDMap k2 f Source #

O(n*log n). mapKeysWith c f s is the map obtained by applying f to each key of s.

The size of the result may be smaller if f maps two or more distinct keys to the same new key. In this case the associated values will be combined using c.

mapKeysMonotonic :: forall {k} k1 k2 (f :: k -> Type). (forall (v :: k). k1 v -> k2 v) -> MonoidalDMap k1 f -> MonoidalDMap k2 f Source #

O(n). mapKeysMonotonic f s == mapKeys f s, but works only when f is strictly monotonic. That is, for any values x and y, if x < y then f x < f y. The precondition is not checked. Semi-formally, we have:

and [x < y ==> f x < f y | x <- ls, y <- ls]
                    ==> mapKeysMonotonic f s == mapKeys f s
    where ls = keys s

This means that f maps distinct original keys to distinct resulting keys. This function has better performance than mapKeys.

foldrWithKey :: (forall (v :: k1). k2 v -> f v -> b -> b) -> b -> MonoidalDMap k2 f -> b Source #

O(n). Post-order fold. The function will be applied from the lowest value to the highest.

foldlWithKey :: (forall (v :: k1). b -> k2 v -> f v -> b) -> b -> MonoidalDMap k2 f -> b Source #

O(n). Pre-order fold. The function will be applied from the highest value to the lowest.

keys :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> [Some k2] Source #

O(n). Return all keys of the map in ascending order.

keys (fromList [(5,"a"), (3,"b")]) == [3,5]
keys empty == []

assocs :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> [DSum k2 f] Source #

O(n). Return all key/value pairs in the map in ascending key order.

fromListWithKey :: GCompare k2 => (forall (v :: k1). k2 v -> f v -> f v -> f v) -> [DSum k2 f] -> MonoidalDMap k2 f Source #

O(n*log n). Build a map from a list of key/value pairs with a combining function. See also fromAscListWithKey.

toList :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> [DSum k2 f] Source #

O(n). Convert to a list of key/value pairs.

toAscList :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> [DSum k2 f] Source #

O(n). Convert to an ascending list.

toDescList :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). MonoidalDMap k2 f -> [DSum k2 f] Source #

O(n). Convert to a descending list.

fromAscListWithKey :: GEq k2 => (forall (v :: k1). k2 v -> f v -> f v -> f v) -> [DSum k2 f] -> MonoidalDMap k2 f Source #

O(n). Build a map from an ascending list in linear time with a combining function for equal keys. The precondition (input list is ascending) is not checked.

split :: forall {k1} k2 (f :: k1 -> Type) (v :: k1). GCompare k2 => k2 v -> MonoidalDMap k2 f -> (MonoidalDMap k2 f, MonoidalDMap k2 f) Source #

O(log n). The expression (split k map) is a pair (map1,map2) where the keys in map1 are smaller than k and the keys in map2 larger than k. Any key equal to k is found in neither map1 nor map2.

splitLookup :: forall {k1} k2 f (v :: k1). GCompare k2 => k2 v -> MonoidalDMap k2 f -> (MonoidalDMap k2 f, Maybe (f v), MonoidalDMap k2 f) Source #

O(log n). The expression (splitLookup k map) splits a map just like split but also returns lookup k map.

showTree :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). (GShow k2, Has' Show k2 f) => MonoidalDMap k2 f -> String Source #

O(n). Show the tree that implements the map. The tree is shown in a compressed, hanging format. See showTreeWith.

showTreeWith :: (forall (v :: k1). k2 v -> f v -> String) -> Bool -> Bool -> MonoidalDMap k2 f -> String Source #

O(n). The expression (showTreeWith showelem hang wide map) shows the tree that implements the map. Elements are shown using the showElem function. If hang is True, a hanging tree is shown otherwise a rotated tree is shown. If wide is True, an extra wide version is shown.

valid :: forall {k1} (k2 :: k1 -> Type) (f :: k1 -> Type). GCompare k2 => MonoidalDMap k2 f -> Bool Source #

O(n). Test if the internal map structure is valid.