Copyright | (c) 2011-2015 diagrams-lib team (see LICENSE) |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | diagrams-discuss@googlegroups.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Diagrams.Prelude
Description
A module to re-export most of the functionality of the diagrams core and standard library.
Synopsis
- module Diagrams
- module Data.Default.Class
- alphaChannel :: AlphaColour a -> a
- blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a
- withOpacity :: Num a => Colour a -> a -> AlphaColour a
- dissolve :: Num a => a -> AlphaColour a -> AlphaColour a
- opaque :: Num a => Colour a -> AlphaColour a
- alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b
- transparent :: Num a => AlphaColour a
- black :: Num a => Colour a
- colourConvert :: (Fractional b, Real a) => Colour a -> Colour b
- data Colour a
- data AlphaColour a
- class ColourOps (f :: Type -> Type) where
- yellowgreen :: (Ord a, Floating a) => Colour a
- yellow :: (Ord a, Floating a) => Colour a
- whitesmoke :: (Ord a, Floating a) => Colour a
- white :: (Ord a, Floating a) => Colour a
- wheat :: (Ord a, Floating a) => Colour a
- violet :: (Ord a, Floating a) => Colour a
- turquoise :: (Ord a, Floating a) => Colour a
- tomato :: (Ord a, Floating a) => Colour a
- thistle :: (Ord a, Floating a) => Colour a
- teal :: (Ord a, Floating a) => Colour a
- steelblue :: (Ord a, Floating a) => Colour a
- springgreen :: (Ord a, Floating a) => Colour a
- snow :: (Ord a, Floating a) => Colour a
- slategrey :: (Ord a, Floating a) => Colour a
- slategray :: (Ord a, Floating a) => Colour a
- slateblue :: (Ord a, Floating a) => Colour a
- skyblue :: (Ord a, Floating a) => Colour a
- silver :: (Ord a, Floating a) => Colour a
- sienna :: (Ord a, Floating a) => Colour a
- seashell :: (Ord a, Floating a) => Colour a
- seagreen :: (Ord a, Floating a) => Colour a
- sandybrown :: (Ord a, Floating a) => Colour a
- salmon :: (Ord a, Floating a) => Colour a
- saddlebrown :: (Ord a, Floating a) => Colour a
- royalblue :: (Ord a, Floating a) => Colour a
- rosybrown :: (Ord a, Floating a) => Colour a
- red :: (Ord a, Floating a) => Colour a
- purple :: (Ord a, Floating a) => Colour a
- powderblue :: (Ord a, Floating a) => Colour a
- plum :: (Ord a, Floating a) => Colour a
- pink :: (Ord a, Floating a) => Colour a
- peru :: (Ord a, Floating a) => Colour a
- peachpuff :: (Ord a, Floating a) => Colour a
- papayawhip :: (Ord a, Floating a) => Colour a
- palevioletred :: (Ord a, Floating a) => Colour a
- paleturquoise :: (Ord a, Floating a) => Colour a
- palegreen :: (Ord a, Floating a) => Colour a
- palegoldenrod :: (Ord a, Floating a) => Colour a
- orchid :: (Ord a, Floating a) => Colour a
- orangered :: (Ord a, Floating a) => Colour a
- orange :: (Ord a, Floating a) => Colour a
- olivedrab :: (Ord a, Floating a) => Colour a
- olive :: (Ord a, Floating a) => Colour a
- oldlace :: (Ord a, Floating a) => Colour a
- navy :: (Ord a, Floating a) => Colour a
- navajowhite :: (Ord a, Floating a) => Colour a
- moccasin :: (Ord a, Floating a) => Colour a
- mistyrose :: (Ord a, Floating a) => Colour a
- mintcream :: (Ord a, Floating a) => Colour a
- midnightblue :: (Ord a, Floating a) => Colour a
- mediumvioletred :: (Ord a, Floating a) => Colour a
- mediumturquoise :: (Ord a, Floating a) => Colour a
- mediumspringgreen :: (Ord a, Floating a) => Colour a
- mediumslateblue :: (Ord a, Floating a) => Colour a
- mediumseagreen :: (Ord a, Floating a) => Colour a
- mediumpurple :: (Ord a, Floating a) => Colour a
- mediumorchid :: (Ord a, Floating a) => Colour a
- mediumblue :: (Ord a, Floating a) => Colour a
- mediumaquamarine :: (Ord a, Floating a) => Colour a
- maroon :: (Ord a, Floating a) => Colour a
- magenta :: (Ord a, Floating a) => Colour a
- linen :: (Ord a, Floating a) => Colour a
- limegreen :: (Ord a, Floating a) => Colour a
- lime :: (Ord a, Floating a) => Colour a
- lightyellow :: (Ord a, Floating a) => Colour a
- lightsteelblue :: (Ord a, Floating a) => Colour a
- lightslategrey :: (Ord a, Floating a) => Colour a
- lightslategray :: (Ord a, Floating a) => Colour a
- lightskyblue :: (Ord a, Floating a) => Colour a
- lightseagreen :: (Ord a, Floating a) => Colour a
- lightsalmon :: (Ord a, Floating a) => Colour a
- lightpink :: (Ord a, Floating a) => Colour a
- lightgrey :: (Ord a, Floating a) => Colour a
- lightgreen :: (Ord a, Floating a) => Colour a
- lightgray :: (Ord a, Floating a) => Colour a
- lightgoldenrodyellow :: (Ord a, Floating a) => Colour a
- lightcyan :: (Ord a, Floating a) => Colour a
- lightcoral :: (Ord a, Floating a) => Colour a
- lightblue :: (Ord a, Floating a) => Colour a
- lemonchiffon :: (Ord a, Floating a) => Colour a
- lawngreen :: (Ord a, Floating a) => Colour a
- lavenderblush :: (Ord a, Floating a) => Colour a
- lavender :: (Ord a, Floating a) => Colour a
- khaki :: (Ord a, Floating a) => Colour a
- ivory :: (Ord a, Floating a) => Colour a
- indigo :: (Ord a, Floating a) => Colour a
- indianred :: (Ord a, Floating a) => Colour a
- hotpink :: (Ord a, Floating a) => Colour a
- honeydew :: (Ord a, Floating a) => Colour a
- greenyellow :: (Ord a, Floating a) => Colour a
- green :: (Ord a, Floating a) => Colour a
- grey :: (Ord a, Floating a) => Colour a
- gray :: (Ord a, Floating a) => Colour a
- goldenrod :: (Ord a, Floating a) => Colour a
- gold :: (Ord a, Floating a) => Colour a
- ghostwhite :: (Ord a, Floating a) => Colour a
- gainsboro :: (Ord a, Floating a) => Colour a
- fuchsia :: (Ord a, Floating a) => Colour a
- forestgreen :: (Ord a, Floating a) => Colour a
- floralwhite :: (Ord a, Floating a) => Colour a
- firebrick :: (Ord a, Floating a) => Colour a
- dodgerblue :: (Ord a, Floating a) => Colour a
- dimgrey :: (Ord a, Floating a) => Colour a
- dimgray :: (Ord a, Floating a) => Colour a
- deepskyblue :: (Ord a, Floating a) => Colour a
- deeppink :: (Ord a, Floating a) => Colour a
- darkviolet :: (Ord a, Floating a) => Colour a
- darkturquoise :: (Ord a, Floating a) => Colour a
- darkslategrey :: (Ord a, Floating a) => Colour a
- darkslategray :: (Ord a, Floating a) => Colour a
- darkslateblue :: (Ord a, Floating a) => Colour a
- darkseagreen :: (Ord a, Floating a) => Colour a
- darksalmon :: (Ord a, Floating a) => Colour a
- darkred :: (Ord a, Floating a) => Colour a
- darkorchid :: (Ord a, Floating a) => Colour a
- darkorange :: (Ord a, Floating a) => Colour a
- darkolivegreen :: (Ord a, Floating a) => Colour a
- darkmagenta :: (Ord a, Floating a) => Colour a
- darkkhaki :: (Ord a, Floating a) => Colour a
- darkgrey :: (Ord a, Floating a) => Colour a
- darkgreen :: (Ord a, Floating a) => Colour a
- darkgray :: (Ord a, Floating a) => Colour a
- darkgoldenrod :: (Ord a, Floating a) => Colour a
- darkcyan :: (Ord a, Floating a) => Colour a
- darkblue :: (Ord a, Floating a) => Colour a
- cyan :: (Ord a, Floating a) => Colour a
- crimson :: (Ord a, Floating a) => Colour a
- cornsilk :: (Ord a, Floating a) => Colour a
- cornflowerblue :: (Ord a, Floating a) => Colour a
- coral :: (Ord a, Floating a) => Colour a
- chocolate :: (Ord a, Floating a) => Colour a
- chartreuse :: (Ord a, Floating a) => Colour a
- cadetblue :: (Ord a, Floating a) => Colour a
- burlywood :: (Ord a, Floating a) => Colour a
- brown :: (Ord a, Floating a) => Colour a
- blueviolet :: (Ord a, Floating a) => Colour a
- blue :: (Ord a, Floating a) => Colour a
- blanchedalmond :: (Ord a, Floating a) => Colour a
- bisque :: (Ord a, Floating a) => Colour a
- beige :: (Ord a, Floating a) => Colour a
- azure :: (Ord a, Floating a) => Colour a
- aquamarine :: (Ord a, Floating a) => Colour a
- aqua :: (Ord a, Floating a) => Colour a
- antiquewhite :: (Ord a, Floating a) => Colour a
- aliceblue :: (Ord a, Floating a) => Colour a
- readColourName :: (MonadFail m, Monad m, Ord a, Floating a) => String -> m (Colour a)
- black :: Num a => Colour a
- module Data.Colour.SRGB
- module Data.Semigroup
- module Linear.Vector
- module Linear.Affine
- module Linear.Metric
- module Data.Active
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- class Contravariant (f :: Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
- newtype Identity a = Identity {
- runIdentity :: a
- newtype Const a (b :: k) = Const {
- getConst :: a
- data (a :: k) :~: (b :: k) where
- (&) :: a -> (a -> b) -> b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b
- ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b
- ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a)
- iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b]
- iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m ()
- imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b)
- imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
- class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- class Profunctor (p :: Type -> Type -> Type) where
- defaultFieldRules :: LensRules
- makeFieldsNoPrefix :: Name -> DecsQ
- makeFields :: Name -> DecsQ
- abbreviatedNamer :: FieldNamer
- abbreviatedFields :: LensRules
- classUnderscoreNoPrefixNamer :: FieldNamer
- classUnderscoreNoPrefixFields :: LensRules
- camelCaseNamer :: FieldNamer
- camelCaseFields :: LensRules
- underscoreNamer :: FieldNamer
- underscoreFields :: LensRules
- makeWrapped :: Name -> DecsQ
- declareLensesWith :: LensRules -> DecsQ -> DecsQ
- declareFields :: DecsQ -> DecsQ
- declareWrapped :: DecsQ -> DecsQ
- declarePrisms :: DecsQ -> DecsQ
- declareClassyFor :: [(String, (String, String))] -> [(String, String)] -> DecsQ -> DecsQ
- declareClassy :: DecsQ -> DecsQ
- declareLensesFor :: [(String, String)] -> DecsQ -> DecsQ
- declareLenses :: DecsQ -> DecsQ
- makeLensesWith :: LensRules -> Name -> DecsQ
- makeClassyFor :: String -> String -> [(String, String)] -> Name -> DecsQ
- makeLensesFor :: [(String, String)] -> Name -> DecsQ
- makeClassy_ :: Name -> DecsQ
- makeClassy :: Name -> DecsQ
- makeLenses :: Name -> DecsQ
- classyRules_ :: LensRules
- classyRules :: LensRules
- mappingNamer :: (String -> [String]) -> FieldNamer
- lookingupNamer :: [(String, String)] -> FieldNamer
- lensRulesFor :: [(String, String)] -> LensRules
- underscoreNoPrefixNamer :: FieldNamer
- lensRules :: LensRules
- lensClass :: Lens' LensRules ClassyNamer
- lensField :: Lens' LensRules FieldNamer
- createClass :: Lens' LensRules Bool
- generateLazyPatterns :: Lens' LensRules Bool
- generateUpdateableOptics :: Lens' LensRules Bool
- generateSignatures :: Lens' LensRules Bool
- simpleLenses :: Lens' LensRules Bool
- data LensRules
- type FieldNamer = Name -> [Name] -> Name -> [DefName]
- data DefName
- type ClassyNamer = Name -> Maybe (Name, Name)
- makeClassyPrisms :: Name -> DecsQ
- makePrisms :: Name -> DecsQ
- iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m))
- sans :: At m => Index m -> m -> m
- ixAt :: At m => Index m -> Traversal' m (IxValue m)
- iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m)
- icontains :: Contains m => Index m -> IndexedLens' (Index m) m Bool
- type family Index s
- class Contains m
- type family IxValue m
- class Ixed m where
- ix :: Index m -> Traversal' m (IxValue m)
- class Ixed m => At m
- class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where
- gplate1 :: forall {k} (f :: k -> Type) (a :: k). (Generic1 f, GPlated1 f (Rep1 f)) => Traversal' (f a) (f a)
- gplate :: (Generic a, GPlated a (Rep a)) => Traversal' a a
- parts :: Plated a => Lens' a [a]
- composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b
- para :: Plated a => (a -> [r] -> r) -> a -> r
- paraOf :: Getting (Endo [a]) a a -> (a -> [r] -> r) -> a -> r
- holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t]
- holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- holes :: Plated a => a -> [Pretext (->) a a a]
- contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t]
- contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t]
- contextsOf :: ATraversal' a a -> a -> [Context a a a]
- contexts :: Plated a => a -> [Context a a a]
- transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t
- transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b
- transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t
- transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a
- transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t
- transformOf :: ASetter a b a b -> (b -> b) -> a -> b
- transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t
- cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a
- cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a
- cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a
- cosmos :: Plated a => Fold a a
- universeOnOf :: Getting (Endo [a]) s a -> Getting (Endo [a]) a a -> s -> [a]
- universeOn :: Plated a => Getting (Endo [a]) s a -> s -> [a]
- universeOf :: Getting (Endo [a]) a a -> a -> [a]
- universe :: Plated a => a -> [a]
- rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t
- rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t
- rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b
- rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a
- rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t
- rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t
- rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b
- rewrite :: Plated a => (a -> Maybe a) -> a -> a
- deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b
- class Plated a where
- plate :: Traversal' a a
- class GPlated a (g :: k -> Type)
- class GPlated1 (f :: k -> Type) (g :: k -> Type)
- type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type
- type family Magnified (m :: Type -> Type) :: Type -> Type -> Type
- class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where
- class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where
- alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s)
- ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s)
- _Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s
- _Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s)
- op :: Wrapped s => (Unwrapped s -> s) -> s -> Unwrapped s
- _Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s
- _GWrapped' :: forall s (d :: Meta) (c :: Meta) (s' :: Meta) a. (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s)
- pattern Wrapped :: Rewrapped s s => Unwrapped s -> s
- pattern Unwrapped :: Rewrapped t t => t -> Unwrapped t
- type family Unwrapped s
- class Wrapped s where
- class Wrapped s => Rewrapped s t
- class (Rewrapped s t, Rewrapped t s) => Rewrapping s t
- unsnoc :: Snoc s s a a => s -> Maybe (s, a)
- snoc :: Snoc s s a a => s -> a -> s
- (|>) :: Snoc s s a a => s -> a -> s
- _last :: Snoc s s a a => Traversal' s a
- _init :: Snoc s s a a => Traversal' s s
- _tail :: Cons s s a a => Traversal' s s
- _head :: Cons s s a a => Traversal' s a
- uncons :: Cons s s a a => s -> Maybe (a, s)
- cons :: Cons s s a a => a -> s -> s
- (<|) :: Cons s s a a => a -> s -> s
- pattern (:<) :: Cons b b a a => a -> b -> b
- pattern (:>) :: Snoc a a b b => a -> b -> a
- class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where
- pattern Empty :: AsEmpty s => s
- class AsEmpty a where
- coerced :: forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
- seconding :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
- firsting :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
- bimapping :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b s' t' a' b'. (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
- rmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
- lmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
- dimapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b s' t' a' b'. (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
- contramapping :: forall (f :: Type -> Type) s t a b. Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
- imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- involuted :: (a -> a) -> Iso' a a
- reversed :: Reversing a => Iso' a a
- lazy :: Strict lazy strict => Iso' strict lazy
- strict :: Strict lazy strict => Iso' lazy strict
- swapped :: forall (p :: Type -> Type -> Type) a b c d. Swap p => Iso (p a b) (p c d) (p b a) (p d c)
- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- non' :: APrism' a () -> Iso' (Maybe a) a
- non :: Eq a => a -> Iso' (Maybe a) a
- mapping :: forall (f :: Type -> Type) (g :: Type -> Type) s t a b. (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- enum :: Enum a => Iso' Int a
- under :: AnIso s t a b -> (t -> s) -> b -> a
- xplatf :: forall {k} {k2} f g (s :: k) (t :: k2) (a :: k) (b :: k2). Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
- xplat :: forall {k2} s g (t :: k2) a (b :: k2). Optic (Costar ((->) s)) g s t a b -> ((s -> a) -> g b) -> g t
- auf :: (Functor f, Functor g) => AnIso s t a b -> (f t -> g s) -> f b -> g a
- au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
- cloneIso :: AnIso s t a b -> Iso s t a b
- withIso :: forall s t a b (rep :: RuntimeRep) (r :: TYPE rep). AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- from :: AnIso s t a b -> Iso b a t s
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- pattern Strict :: Strict s t => t -> s
- pattern Lazy :: Strict t s => t -> s
- pattern Swapped :: Swap p => p b a -> p a b
- pattern Reversed :: Reversing t => t -> t
- pattern List :: IsList l => [Item l] -> l
- type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
- type AnIso' s a = AnIso s s a a
- withEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) (rep :: RuntimeRep) (r :: TYPE rep). AnEquality s t a b -> ((s :~: a) -> (b :~: t) -> r) -> r
- fromLeibniz' :: forall {k2} (s :: k2) (a :: k2). ((s :~: s) -> s :~: a) -> Equality' s a
- fromLeibniz :: forall {k1} {k2} (a :: k1) (b :: k2) (s :: k1) (t :: k2). (Identical a b a b -> Identical a b s t) -> Equality s t a b
- underEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p t s -> p b a
- overEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p a b -> p s t
- equality' :: forall {k2} (a :: k2) (b :: k2). (a :~: b) -> Equality' a b
- equality :: forall {k1} {k2} (s :: k1) (a :: k1) (b :: k2) (t :: k2). (s :~: a) -> (b :~: t) -> Equality s t a b
- cloneEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Equality s t a b
- simple :: forall {k2} (a :: k2). Equality' a a
- simply :: forall {k} {k1} p (f :: k -> k1) (s :: k) (a :: k) (rep :: RuntimeRep) (r :: TYPE rep). (Optic' p f s a -> r) -> Optic' p f s a -> r
- fromEq :: forall {k2} {k1} (s :: k2) (t :: k1) (a :: k2) (b :: k1). AnEquality s t a b -> Equality b a t s
- mapEq :: forall k1 k2 (s :: k1) (t :: k2) (a :: k1) (b :: k2) f. AnEquality s t a b -> f s -> f a
- substEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) (rep :: RuntimeRep) (r :: TYPE rep). AnEquality s t a b -> ((s ~ a, t ~ b) => r) -> r
- runEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Identical s t a b
- data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) where
- type AnEquality (s :: k) (t :: k1) (a :: k) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t)
- type AnEquality' (s :: k) (a :: k) = AnEquality s s a a
- itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t
- itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b)
- ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r
- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r
- itraversed :: forall i (t :: Type -> Type) a b. TraversableWithIndex i t => IndexedTraversal i (t a) (t b) a b
- ifolded :: forall i (f :: Type -> Type) a. FoldableWithIndex i f => IndexedFold i (f a) a
- imapped :: forall i (f :: Type -> Type) a b. FunctorWithIndex i f => IndexedSetter i (f a) (f b) a b
- index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a
- icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r
- reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r
- selfIndex :: Indexable a p => p a fb -> a -> fb
- (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r
- newtype ReifiedLens s t a b = Lens {}
- type ReifiedLens' s a = ReifiedLens s s a a
- newtype ReifiedIndexedLens i s t a b = IndexedLens {
- runIndexedLens :: IndexedLens i s t a b
- type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a
- newtype ReifiedIndexedTraversal i s t a b = IndexedTraversal {
- runIndexedTraversal :: IndexedTraversal i s t a b
- type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a
- newtype ReifiedTraversal s t a b = Traversal {
- runTraversal :: Traversal s t a b
- type ReifiedTraversal' s a = ReifiedTraversal s s a a
- newtype ReifiedGetter s a = Getter {}
- newtype ReifiedIndexedGetter i s a = IndexedGetter {
- runIndexedGetter :: IndexedGetter i s a
- newtype ReifiedFold s a = Fold {}
- newtype ReifiedIndexedFold i s a = IndexedFold {
- runIndexedFold :: IndexedFold i s a
- newtype ReifiedSetter s t a b = Setter {}
- type ReifiedSetter' s a = ReifiedSetter s s a a
- newtype ReifiedIndexedSetter i s t a b = IndexedSetter {
- runIndexedSetter :: IndexedSetter i s t a b
- type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a
- newtype ReifiedIso s t a b = Iso {}
- type ReifiedIso' s a = ReifiedIso s s a a
- newtype ReifiedPrism s t a b = Prism {}
- type ReifiedPrism' s a = ReifiedPrism s s a a
- ilevels :: forall (f :: Type -> Type) i s t a b j. Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b)
- sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t
- traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t
- confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b
- deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b
- failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b
- ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t
- failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t
- elements :: forall (t :: Type -> Type) a. Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a
- elementsOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a
- element :: forall (t :: Type -> Type) a. Traversable t => Int -> IndexedTraversal' Int (t a) a
- elementOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a
- ignored :: Applicative f => pafb -> s -> f s
- traversed64 :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int64 (f a) (f b) a b
- traversed1 :: forall (f :: TYPE LiftedRep -> Type) a b. Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b
- traversed :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int (f a) (f b) a b
- imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t
- imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t
- iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t
- itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t
- cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b
- cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b
- cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b
- cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b
- cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b
- cloneTraversal :: ATraversal s t a b -> Traversal s t a b
- dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a
- taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a
- both1 :: forall (r :: TYPE LiftedRep -> TYPE LiftedRep -> Type) a b. Bitraversable1 r => Traversal1 (r a a) (r b b) a b
- both :: forall (r :: Type -> Type -> Type) a b. Bitraversable r => Traversal (r a a) (r b b) a b
- holes1Of :: Conjoined p => Over p (Bazaar1 p a a) s t a a -> s -> NonEmpty (Pretext p a a t)
- holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b
- iunsafePartsOf' :: forall i s t a b. Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b]
- unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b]
- iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b]
- unsafePartsOf :: Functor f => Traversing (->) f s t a b -> LensLike f s t [a] [b]
- ipartsOf' :: forall i p f s t a. (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a]
- partsOf' :: ATraversal s t a a -> Lens s t [a] [a]
- ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a]
- partsOf :: Functor f => Traversing (->) f s t a a -> LensLike f s t [a] [a]
- iloci :: IndexedTraversal i (Bazaar (Indexed i) a c s) (Bazaar (Indexed i) b c s) a b
- loci :: Traversal (Bazaar (->) a c s) (Bazaar (->) b c s) a b
- scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t
- scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t
- mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- transposeOf :: LensLike ZipList s t [a] a -> s -> [t]
- sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t
- forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t
- mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t
- sequenceAOf :: LensLike f s t (f b) b -> s -> f t
- forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t
- traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t
- traversal :: ((a -> f b) -> s -> f t) -> LensLike f s t a b
- type ATraversal s t a b = LensLike (Bazaar (->) a b) s t a b
- type ATraversal' s a = ATraversal s s a a
- type ATraversal1 s t a b = LensLike (Bazaar1 (->) a b) s t a b
- type ATraversal1' s a = ATraversal1 s s a a
- type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b
- type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b
- type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a
- type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a
- type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b
- type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b
- type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a
- type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a
- class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where
- traverseMin :: IndexedTraversal' k (m v) v
- class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where
- traverseMax :: IndexedTraversal' k (m v) v
- foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
- foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a
- idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a
- ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a
- findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i]
- findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i
- elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i]
- elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i
- (^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a)
- (^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a)
- (^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)]
- itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)]
- ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r
- ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r
- ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a)
- ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a
- iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r]
- iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m ()
- imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m ()
- iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f ()
- itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f ()
- inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool
- ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m
- ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a)
- ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a)
- ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a))
- pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a)
- hasn't :: Getting All s a -> s -> Bool
- has :: Getting Any s a -> s -> Bool
- foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r
- foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r
- foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a
- foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r
- foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a
- lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v
- findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a)
- findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a
- minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- minimum1Of :: Ord a => Getting (Min a) s a -> s -> a
- minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- maximum1Of :: Ord a => Getting (Max a) s a -> s -> a
- maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- notNullOf :: Getting Any s a -> s -> Bool
- nullOf :: Getting All s a -> s -> Bool
- last1Of :: Getting (Last a) s a -> s -> a
- lastOf :: Getting (Rightmost a) s a -> s -> Maybe a
- first1Of :: Getting (First a) s a -> s -> a
- firstOf :: Getting (Leftmost a) s a -> s -> Maybe a
- (^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a
- (^?) :: s -> Getting (First a) s a -> Maybe a
- lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int
- concatOf :: Getting [r] s [r] -> s -> [r]
- concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r]
- notElemOf :: Eq a => Getting All s a -> a -> s -> Bool
- elemOf :: Eq a => Getting Any s a -> a -> s -> Bool
- msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a
- asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a
- sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m ()
- forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m ()
- mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m ()
- sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f ()
- for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f ()
- traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f ()
- sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f ()
- forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f ()
- traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f ()
- sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- allOf :: Getting All s a -> (a -> Bool) -> s -> Bool
- anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- orOf :: Getting Any s Bool -> s -> Bool
- andOf :: Getting All s Bool -> s -> Bool
- (^..) :: s -> Getting (Endo [a]) s a -> [a]
- toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a
- toListOf :: Getting (Endo [a]) s a -> s -> [a]
- foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
- foldOf :: Getting a s a -> s -> a
- foldMapOf :: Getting r s a -> (a -> r) -> s -> r
- lined :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String
- worded :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String
- droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a
- filteredBy :: (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a
- filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a
- iterated :: Apply f => (a -> a) -> LensLike' f a a
- unfolded :: (b -> Maybe (a, b)) -> Fold b a
- cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b
- replicated :: Int -> Fold a a
- repeated :: Apply f => LensLike' f a a
- folded64 :: forall (f :: TYPE LiftedRep -> Type) a. Foldable f => IndexedFold Int64 (f a) a
- folded :: forall (f :: TYPE LiftedRep -> Type) a. Foldable f => IndexedFold Int (f a) a
- ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b
- foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b
- ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b
- folding :: Foldable f => (s -> f a) -> Fold s a
- _Show :: (Read a, Show a) => Prism' String a
- nearly :: a -> (a -> Bool) -> Prism' a ()
- only :: Eq a => a -> Prism' a ()
- _Void :: Prism s s a Void
- _Nothing :: Prism' (Maybe a) ()
- _Just :: Prism (Maybe a) (Maybe b) a b
- _Right :: Prism (Either c a) (Either c b) a b
- _Left :: Prism (Either a c) (Either b c) a b
- matching' :: LensLike (Either a) s t a b -> s -> Either t a
- matching :: APrism s t a b -> s -> Either t a
- isn't :: APrism s t a b -> s -> Bool
- below :: forall (f :: Type -> Type) s a. Traversable f => APrism' s a -> Prism' (f s) (f a)
- aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b)
- without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d)
- prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b
- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
- clonePrism :: APrism s t a b -> Prism s t a b
- withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r
- type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t)
- type APrism' s a = APrism s s a a
- class Prefixed t where
- class Suffixed t where
- reviewing :: (Bifunctor p, Functor f) => Optic (Tagged :: Type -> Type -> Type) Identity s t a b -> Optic' p f t b
- reuses :: MonadState b m => AReview t b -> (t -> r) -> m r
- reuse :: MonadState b m => AReview t b -> m t
- reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r
- review :: MonadReader b m => AReview t b -> m t
- re :: AReview t b -> Getter b t
- un :: (Profunctor p, Bifunctor p, Functor f) => Getting a s a -> Optic' p f a s
- unto :: (Profunctor p, Bifunctor p, Functor f) => (b -> t) -> Optic p f s t a b
- getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a
- (^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a)
- iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a)
- iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a)
- ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v)
- listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v)
- ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u))
- listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u)
- uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- use :: MonadState s m => Getting a s a -> m a
- (^.) :: s -> Getting a s a -> a
- views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- view :: MonadReader s m => Getting a s a -> m a
- ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a
- like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a
- ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a
- to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a
- type Getting r s a = (a -> Const r a) -> s -> Const r s
- type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s
- type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s
- _19' :: Field19 s t a b => Lens s t a b
- _18' :: Field18 s t a b => Lens s t a b
- _17' :: Field17 s t a b => Lens s t a b
- _16' :: Field16 s t a b => Lens s t a b
- _15' :: Field15 s t a b => Lens s t a b
- _14' :: Field14 s t a b => Lens s t a b
- _13' :: Field13 s t a b => Lens s t a b
- _12' :: Field12 s t a b => Lens s t a b
- _11' :: Field11 s t a b => Lens s t a b
- _10' :: Field10 s t a b => Lens s t a b
- _9' :: Field9 s t a b => Lens s t a b
- _8' :: Field8 s t a b => Lens s t a b
- _7' :: Field7 s t a b => Lens s t a b
- _6' :: Field6 s t a b => Lens s t a b
- _5' :: Field5 s t a b => Lens s t a b
- _4' :: Field4 s t a b => Lens s t a b
- _3' :: Field3 s t a b => Lens s t a b
- _2' :: Field2 s t a b => Lens s t a b
- _1' :: Field1 s t a b => Lens s t a b
- class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b
- last1 :: forall (t :: TYPE LiftedRep -> Type) a. Traversable1 t => Lens' (t a) a
- head1 :: forall (t :: TYPE LiftedRep -> Type) a. Traversable1 t => Lens' (t a) a
- united :: Lens' a ()
- devoid :: forall {k} p f (a :: k) b. Over p f Void Void a b
- (<#=) :: MonadState s m => ALens s s a b -> b -> m b
- (<#~) :: ALens s t a b -> b -> s -> (b, t)
- (#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r
- (<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b
- (<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t)
- (#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()
- (#=) :: MonadState s m => ALens s s a b -> b -> m ()
- (#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t
- (#%~) :: ALens s t a b -> (a -> b) -> s -> t
- (#~) :: ALens s t a b -> b -> s -> t
- storing :: ALens s t a b -> b -> s -> t
- (^#) :: s -> ALens s t a b -> a
- (<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a
- (<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b
- (%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r
- (%%@~) :: forall {k1} i f s (t :: k1) a (b :: k1). Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t
- (<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t)
- (<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t)
- overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t
- (<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<>~) :: Semigroup m => LensLike ((,) m) s t m m -> m -> s -> (m, t)
- (<<~) :: MonadState s m => ALens s s a b -> m b -> m b
- (<<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a
- (<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a
- (<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a
- (<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b
- (<<<>~) :: Semigroup r => LensLike' ((,) r) s r -> r -> s -> (r, s)
- (<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<^~) :: (Num a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t)
- (<<.~) :: LensLike ((,) a) s t a b -> b -> s -> (a, t)
- (<<%~) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t)
- (<&&~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<||~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<**~) :: Floating a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<^~) :: (Num a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<*~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<-~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<+~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<%~) :: LensLike ((,) b) s t a b -> (a -> b) -> s -> (b, t)
- cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b
- cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b
- cloneLens :: ALens s t a b -> Lens s t a b
- locus :: forall (p :: Type -> Type -> Type -> Type) a c s b. IndexedComonadStore p => Lens (p a c s) (p b c s) a b
- alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')
- chosen :: IndexPreservingLens (Either a a) (Either b b) a b
- choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b
- (??) :: Functor f => f (a -> b) -> a -> f b
- (%%=) :: forall {k} s m p r (a :: k) b. MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r
- (%%~) :: forall {k} f s (t :: k) a (b :: k). LensLike f s t a b -> (a -> f b) -> s -> f t
- (&~) :: s -> State s a -> s
- ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b
- iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b
- withLens :: forall s t a b (rep :: RuntimeRep) (r :: TYPE rep). ALens s t a b -> ((s -> a) -> (s -> b -> t) -> r) -> r
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- type ALens s t a b = LensLike (Pretext (->) a b) s t a b
- type ALens' s a = ALens s s a a
- type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a b
- type AnIndexedLens' i s a = AnIndexedLens i s s a a
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- mapOf :: ASetter s t a b -> (a -> b) -> s -> t
- assignA :: Arrow p => ASetter s t a b -> p s b -> p s t
- (.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m ()
- imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r
- locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- (<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m ()
- (<>~) :: Semigroup a => ASetter s t a a -> a -> s -> t
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (%~) :: ASetter s t a b -> (a -> b) -> s -> t
- set' :: ASetter' s a -> a -> s -> s
- set :: ASetter s t a b -> b -> s -> t
- over :: ASetter s t a b -> (a -> b) -> s -> t
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- contramapped :: forall (f :: Type -> Type) b a. Contravariant f => Setter (f b) (f a) a b
- lifted :: forall (m :: Type -> Type) a b. Monad m => Setter (m a) (m b) a b
- mapped :: forall (f :: Type -> Type) a b. Functor f => Setter (f a) (f b) a b
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t
- type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a
- type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t
- type Lens' s a = Lens s s a a
- type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t
- type IndexedLens' i s a = IndexedLens i s s a a
- type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t)
- type IndexPreservingLens' s a = IndexPreservingLens s s a a
- type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t
- type Traversal' s a = Traversal s s a a
- type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t
- type Traversal1' s a = Traversal1 s s a a
- type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t
- type IndexedTraversal' i s a = IndexedTraversal i s s a a
- type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t
- type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a
- type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a
- type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a
- type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t
- type Setter' s a = Setter s s a a
- type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t)
- type IndexPreservingSetter' s a = IndexPreservingSetter s s a a
- type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type Iso' s a = Iso s s a a
- type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b
- type AReview t b = Optic' (Tagged :: Type -> Type -> Type) Identity t b
- type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t)
- type Prism' s a = Prism s s a a
- type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t)
- type Equality' (s :: k2) (a :: k2) = Equality s s a a
- type As (a :: k2) = Equality' a a
- type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s
- type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s
- type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s)
- type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s
- type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s
- type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s)
- type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s
- type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s
- type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s)
- type Simple (f :: k1 -> k1 -> k2 -> k2 -> k) (s :: k1) (a :: k2) = f s s a a
- type Optic (p :: k -> k1 -> Type) (f :: k2 -> k1) (s :: k) (t :: k2) (a :: k) (b :: k2) = p a (f b) -> p s (f t)
- type Optic' (p :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optic p f s s a a
- type Optical (p :: k -> k1 -> Type) (q :: k2 -> k1 -> Type) (f :: k3 -> k1) (s :: k2) (t :: k3) (a :: k) (b :: k3) = p a (f b) -> q s (f t)
- type Optical' (p :: k -> k1 -> Type) (q :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optical p q f s s a a
- type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t
- type LensLike' (f :: Type -> Type) s a = LensLike f s s a a
- type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t
- type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a
- type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t
- type Over' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Over p f s s a a
- class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type)
- retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b
- class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type)
- data Magma i t b a
- newtype Bazaar (p :: Type -> Type -> Type) a b t = Bazaar {
- runBazaar :: forall (f :: Type -> Type). Applicative f => p a (f b) -> f t
- type Bazaar' (p :: Type -> Type -> Type) a = Bazaar p a a
- newtype Bazaar1 (p :: Type -> Type -> Type) a b t = Bazaar1 {
- runBazaar1 :: forall (f :: Type -> Type). Apply f => p a (f b) -> f t
- type Bazaar1' (p :: Type -> Type -> Type) a = Bazaar1 p a a
- data Context a b t = Context (b -> t) a
- type Context' a = Context a a
- data Traversed a (f :: Type -> Type)
- data Sequenced a (m :: Type -> Type)
- data Leftmost a
- data Rightmost a
- asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s)
- withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t)
- indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t
- indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t
- class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where
- class Conjoined p => Indexable i (p :: Type -> Type -> Type)
- newtype Indexed i a b = Indexed {
- runIndexed :: i -> a -> b
- data Level i a
- class Reversing t where
- reversing :: t -> t
- class (Foldable1 t, Traversable t) => Traversable1 (t :: TYPE LiftedRep -> Type) where
- foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a
- foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r
- traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b)
- sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
- class Profunctor p => Choice (p :: Type -> Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- (*>) :: Applicative f => f a -> f b -> f b
- (<*) :: Applicative f => f a -> f b -> f a
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<$) :: Functor f => a -> f b -> f a
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
Diagrams library
Exports from this library for working with diagrams.
module Diagrams
Convenience re-exports from other packages
module Data.Default.Class
For representing and operating on colors.
alphaChannel :: AlphaColour a -> a #
Returns the opacity of an AlphaColour
.
blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a #
Compute the weighted average of two points. e.g.
blend 0.4 a b = 0.4*a + 0.6*b
The weight can be negative, or greater than 1.0; however, be aware that non-convex combinations may lead to out of gamut colours.
withOpacity :: Num a => Colour a -> a -> AlphaColour a #
Creates an AlphaColour
from a Colour
with a given opacity.
c `withOpacity` o == dissolve o (opaque c)
dissolve :: Num a => a -> AlphaColour a -> AlphaColour a #
Returns an AlphaColour
more transparent by a factor of o
.
opaque :: Num a => Colour a -> AlphaColour a #
Creates an opaque AlphaColour
from a Colour
.
alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b #
Change the type used to represent the colour coordinates.
transparent :: Num a => AlphaColour a #
This AlphaColour
is entirely transparent and has no associated
colour channel.
colourConvert :: (Fractional b, Real a) => Colour a -> Colour b #
Change the type used to represent the colour coordinates.
This type represents the human preception of colour.
The a
parameter is a numeric type used internally for the
representation.
The Monoid
instance allows one to add colours, but beware that adding
colours can take you out of gamut. Consider using blend
whenever
possible.
Instances
AffineSpace Colour | |
Defined in Data.Colour.Internal | |
ColourOps Colour | |
Num a => Monoid (Colour a) | |
Num a => Semigroup (Colour a) | |
a ~ Double => Color (Colour a) Source # | |
Defined in Diagrams.Attributes Methods toAlphaColour :: Colour a -> AlphaColour Double Source # fromAlphaColour :: AlphaColour Double -> Colour a Source # | |
Parseable (Colour Double) Source # | Parse |
Eq a => Eq (Colour a) | |
data AlphaColour a #
This type represents a Colour
that may be semi-transparent.
The Monoid
instance allows you to composite colours.
x `mappend` y == x `over` y
To get the (pre-multiplied) colour channel of an AlphaColour
c
,
simply composite c
over black.
c `over` black
Instances
class ColourOps (f :: Type -> Type) where #
Methods
darken :: Num a => a -> f a -> f a #
darken s c
blends a colour with black without changing it's opacity.
For Colour
, darken s c = blend s c mempty
Instances
ColourOps AlphaColour | |
Defined in Data.Colour.Internal Methods over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a # darken :: Num a => a -> AlphaColour a -> AlphaColour a # | |
ColourOps Colour | |
A large list of color names.
yellowgreen :: (Ord a, Floating a) => Colour a #
whitesmoke :: (Ord a, Floating a) => Colour a #
springgreen :: (Ord a, Floating a) => Colour a #
sandybrown :: (Ord a, Floating a) => Colour a #
saddlebrown :: (Ord a, Floating a) => Colour a #
powderblue :: (Ord a, Floating a) => Colour a #
papayawhip :: (Ord a, Floating a) => Colour a #
palevioletred :: (Ord a, Floating a) => Colour a #
paleturquoise :: (Ord a, Floating a) => Colour a #
palegoldenrod :: (Ord a, Floating a) => Colour a #
navajowhite :: (Ord a, Floating a) => Colour a #
midnightblue :: (Ord a, Floating a) => Colour a #
mediumvioletred :: (Ord a, Floating a) => Colour a #
mediumturquoise :: (Ord a, Floating a) => Colour a #
mediumspringgreen :: (Ord a, Floating a) => Colour a #
mediumslateblue :: (Ord a, Floating a) => Colour a #
mediumseagreen :: (Ord a, Floating a) => Colour a #
mediumpurple :: (Ord a, Floating a) => Colour a #
mediumorchid :: (Ord a, Floating a) => Colour a #
mediumblue :: (Ord a, Floating a) => Colour a #
mediumaquamarine :: (Ord a, Floating a) => Colour a #
lightyellow :: (Ord a, Floating a) => Colour a #
lightsteelblue :: (Ord a, Floating a) => Colour a #
lightslategrey :: (Ord a, Floating a) => Colour a #
lightslategray :: (Ord a, Floating a) => Colour a #
lightskyblue :: (Ord a, Floating a) => Colour a #
lightseagreen :: (Ord a, Floating a) => Colour a #
lightsalmon :: (Ord a, Floating a) => Colour a #
lightgreen :: (Ord a, Floating a) => Colour a #
lightgoldenrodyellow :: (Ord a, Floating a) => Colour a #
lightcoral :: (Ord a, Floating a) => Colour a #
lemonchiffon :: (Ord a, Floating a) => Colour a #
lavenderblush :: (Ord a, Floating a) => Colour a #
greenyellow :: (Ord a, Floating a) => Colour a #
ghostwhite :: (Ord a, Floating a) => Colour a #
forestgreen :: (Ord a, Floating a) => Colour a #
floralwhite :: (Ord a, Floating a) => Colour a #
dodgerblue :: (Ord a, Floating a) => Colour a #
deepskyblue :: (Ord a, Floating a) => Colour a #
darkviolet :: (Ord a, Floating a) => Colour a #
darkturquoise :: (Ord a, Floating a) => Colour a #
darkslategrey :: (Ord a, Floating a) => Colour a #
darkslategray :: (Ord a, Floating a) => Colour a #
darkslateblue :: (Ord a, Floating a) => Colour a #
darkseagreen :: (Ord a, Floating a) => Colour a #
darksalmon :: (Ord a, Floating a) => Colour a #
darkorchid :: (Ord a, Floating a) => Colour a #
darkorange :: (Ord a, Floating a) => Colour a #
darkolivegreen :: (Ord a, Floating a) => Colour a #
darkmagenta :: (Ord a, Floating a) => Colour a #
darkgoldenrod :: (Ord a, Floating a) => Colour a #
cornflowerblue :: (Ord a, Floating a) => Colour a #
chartreuse :: (Ord a, Floating a) => Colour a #
blueviolet :: (Ord a, Floating a) => Colour a #
blanchedalmond :: (Ord a, Floating a) => Colour a #
aquamarine :: (Ord a, Floating a) => Colour a #
antiquewhite :: (Ord a, Floating a) => Colour a #
Specify your own colours.
module Data.Colour.SRGB
Semigroups and monoids show up all over the place, so things from Data.Semigroup and Data.Monoid often come in handy.
module Data.Semigroup
For computing with vectors.
module Linear.Vector
For computing with points and vectors.
module Linear.Affine
For computing with dot products and norm.
module Linear.Metric
For working with Active
(i.e. animated) things.
module Data.Active
Most of the lens package. The following functions are not exported from lens because they either conflict with diagrams or may conflict with other libraries:
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative
(or,
therefore, Monad
) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>
traverse Just [1,2,3,4]
Just [1,2,3,4]
>>>
traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]
In the next examples, we show that Nothing
and Left
values short
circuit the created structure.
>>>
traverse (const Nothing) [1,2,3,4]
Nothing
>>>
traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]
Nothing
>>>
traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0
Instances
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor
as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool
. One
such predicate might be negative x = x < 0
, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative
predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool } instance Contravariant Predicate where contramap :: (a' -> a) -> (Predicate a -> Predicate a') contramap f (Predicate p) = Predicate (p . f) | `- First, map the input... `----- then apply the predicate. overdrawn :: Predicate Person overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
Note, that the second law follows from the free theorem of the type of
contramap
and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
.
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since: base-4.8.0.0
Methods
Instances
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|