{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE CPP #-}
module Network.DNS.StateBinary (
    PState(..)
  , initialState
  , SPut
  , runSPut
  , put8
  , put16
  , put32
  , putInt8
  , putInt16
  , putInt32
  , putByteString
  , putReplicate
  , SGet
  , failSGet
  , fitSGet
  , runSGet
  , runSGetAt
  , runSGetWithLeftovers
  , runSGetWithLeftoversAt
  , get8
  , get16
  , get32
  , getInt8
  , getInt16
  , getInt32
  , getNByteString
  , sGetMany
  , getPosition
  , getInput
  , getAtTime
  , wsPop
  , wsPush
  , wsPosition
  , addPositionW
  , push
  , pop
  , getNBytes
  , getNoctets
  , skipNBytes
  , parseLabel
  , unparseLabel
  ) where

import qualified Control.Exception as E
import Control.Monad.State.Strict (State, StateT)
import qualified Control.Monad.State.Strict as ST
import qualified Data.Attoparsec.ByteString as A
import qualified Data.Attoparsec.Types as T
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as S8
import Data.ByteString.Builder (Builder)
import qualified Data.ByteString.Builder as BB
import qualified Data.ByteString.Lazy as LB
import qualified Data.ByteString.Lazy.Char8 as LBS
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.Map (Map)
import qualified Data.Map as M
import Data.Semigroup as Sem

import Network.DNS.Imports
import Network.DNS.Types

----------------------------------------------------------------

type SPut = State WState Builder

data WState = WState {
    wsDomain :: Map Domain Int
  , wsPosition :: Int
}

initialWState :: WState
initialWState = WState M.empty 0

instance Sem.Semigroup SPut where
    p1 <> p2 = (Sem.<>) <$> p1 <*> p2

instance Monoid SPut where
    mempty = return mempty
#if !(MIN_VERSION_base(4,11,0))
    mappend = (Sem.<>)
#endif

put8 :: Word8 -> SPut
put8 = fixedSized 1 BB.word8

put16 :: Word16 -> SPut
put16 = fixedSized 2 BB.word16BE

put32 :: Word32 -> SPut
put32 = fixedSized 4 BB.word32BE

putInt8 :: Int -> SPut
putInt8 = fixedSized 1 (BB.int8 . fromIntegral)

putInt16 :: Int -> SPut
putInt16 = fixedSized 2 (BB.int16BE . fromIntegral)

putInt32 :: Int -> SPut
putInt32 = fixedSized 4 (BB.int32BE . fromIntegral)

putByteString :: ByteString -> SPut
putByteString = writeSized BS.length BB.byteString

putReplicate :: Int -> Word8 -> SPut
putReplicate n w =
    fixedSized n BB.lazyByteString $ LB.replicate (fromIntegral n) w

addPositionW :: Int -> State WState ()
addPositionW n = do
    (WState m cur) <- ST.get
    ST.put $ WState m (cur+n)

fixedSized :: Int -> (a -> Builder) -> a -> SPut
fixedSized n f a = do addPositionW n
                      return (f a)

writeSized :: (a -> Int) -> (a -> Builder) -> a -> SPut
writeSized n f a = do addPositionW (n a)
                      return (f a)

wsPop :: Domain -> State WState (Maybe Int)
wsPop dom = do
    doms <- ST.gets wsDomain
    return $ M.lookup dom doms

wsPush :: Domain -> Int -> State WState ()
wsPush dom pos = do
    (WState m cur) <- ST.get
    ST.put $ WState (M.insert dom pos m) cur

----------------------------------------------------------------

type SGet = StateT PState (T.Parser ByteString)

data PState = PState {
    psDomain :: IntMap Domain
  , psPosition :: Int
  , psInput :: ByteString
  , psAtTime  :: Int64
  }

----------------------------------------------------------------

getPosition :: SGet Int
getPosition = ST.gets psPosition

getInput :: SGet ByteString
getInput = ST.gets psInput

getAtTime :: SGet Int64
getAtTime = ST.gets psAtTime

addPosition :: Int -> SGet ()
addPosition n | n < 0 = failSGet "internal error: negative position increment"
              | otherwise = do
    PState dom pos inp t <- ST.get
    let !pos' = pos + n
    when (pos' > BS.length inp) $
        failSGet "malformed or truncated input"
    ST.put $ PState dom pos' inp t

push :: Int -> Domain -> SGet ()
push n d = do
    PState dom pos inp t <- ST.get
    ST.put $ PState (IM.insert n d dom) pos inp t

pop :: Int -> SGet (Maybe Domain)
pop n = ST.gets (IM.lookup n . psDomain)

----------------------------------------------------------------

get8 :: SGet Word8
get8  = ST.lift A.anyWord8 <* addPosition 1

get16 :: SGet Word16
get16 = ST.lift getWord16be <* addPosition 2
  where
    word8' = fromIntegral <$> A.anyWord8
    getWord16be = do
        a <- word8'
        b <- word8'
        return $ a * 0x100 + b

get32 :: SGet Word32
get32 = ST.lift getWord32be <* addPosition 4
  where
    word8' = fromIntegral <$> A.anyWord8
    getWord32be = do
        a <- word8'
        b <- word8'
        c <- word8'
        d <- word8'
        return $ a * 0x1000000 + b * 0x10000 + c * 0x100 + d

getInt8 :: SGet Int
getInt8 = fromIntegral <$> get8

getInt16 :: SGet Int
getInt16 = fromIntegral <$> get16

getInt32 :: SGet Int
getInt32 = fromIntegral <$> get32

----------------------------------------------------------------

overrun :: SGet a
overrun = failSGet "malformed or truncated input"

getNBytes :: Int -> SGet [Int]
getNBytes n | n < 0     = overrun
            | otherwise = toInts <$> getNByteString n
  where
    toInts = map fromIntegral . BS.unpack

getNoctets :: Int -> SGet [Word8]
getNoctets n | n < 0     = overrun
             | otherwise = BS.unpack <$> getNByteString n

skipNBytes :: Int -> SGet ()
skipNBytes n | n < 0     = overrun
             | otherwise = ST.lift (A.take n) >> addPosition n

getNByteString :: Int -> SGet ByteString
getNByteString n | n < 0     = overrun
                 | otherwise = ST.lift (A.take n) <* addPosition n

fitSGet :: Int -> SGet a -> SGet a
fitSGet len parser | len < 0   = overrun
                   | otherwise = do
    pos0 <- getPosition
    ret <- parser
    pos' <- getPosition
    if pos' == pos0 + len
    then return $! ret
    else if pos' > pos0 + len
    then failSGet "element size exceeds declared size"
    else failSGet "element shorter than declared size"

-- | Parse a list of elements that takes up exactly a given number of bytes.
-- In order to avoid infinite loops, if an element parser succeeds without
-- moving the buffer offset forward, an error will be returned.
--
sGetMany :: String -- ^ element type for error messages
         -> Int    -- ^ input buffer length
         -> SGet a -- ^ element parser
         -> SGet [a]
sGetMany elemname len parser | len < 0   = overrun
                             | otherwise = go len []
  where
    go n xs
        | n < 0     = failSGet $ elemname ++ " longer than declared size"
        | n == 0    = pure $ reverse xs
        | otherwise = do
            pos0 <- getPosition
            x    <- parser
            pos1 <- getPosition
            if pos1 <= pos0
            then failSGet $ "internal error: in-place success for " ++ elemname
            else go (n + pos0 - pos1) (x : xs)

----------------------------------------------------------------

-- | To get a broad range of correct RRSIG inception and expiration times
-- without over or underflow, we choose a time half way between midnight PDT
-- 2010-07-15 (the day the root zone was signed) and 2^32 seconds later on
-- 2146-08-21.  Since 'decode' and 'runSGet' are pure, we can't peek at the
-- current time while parsing.  Outside this date range the output is off by
-- some non-zero multiple 2\^32 seconds.
--
dnsTimeMid :: Int64
dnsTimeMid = 3426660848

initialState :: Int64 -> ByteString -> PState
initialState t inp = PState IM.empty 0 inp t

-- Construct our own error message, without the unhelpful AttoParsec
-- \"Failed reading: \" prefix.
--
failSGet :: String -> SGet a
failSGet msg = ST.lift (fail "" A.<?> msg)

runSGetAt :: Int64 -> SGet a -> ByteString -> Either DNSError (a, PState)
runSGetAt t parser inp =
    toResult $ A.parse (ST.runStateT parser $ initialState t inp) inp
  where
    toResult :: A.Result r -> Either DNSError r
    toResult (A.Done _ r)        = Right r
    toResult (A.Fail _ ctx msg)  = Left $ DecodeError $ head $ ctx ++ [msg]
    toResult (A.Partial _)       = Left $ DecodeError "incomplete input"

runSGet :: SGet a -> ByteString -> Either DNSError (a, PState)
runSGet = runSGetAt dnsTimeMid

runSGetWithLeftoversAt :: Int64      -- ^ Reference time for DNS clock arithmetic
                       -> SGet a     -- ^ Parser
                       -> ByteString -- ^ Encoded message
                       -> Either DNSError ((a, PState), ByteString)
runSGetWithLeftoversAt t parser inp =
    toResult $ A.parse (ST.runStateT parser $ initialState t inp) inp
  where
    toResult :: A.Result r -> Either DNSError (r, ByteString)
    toResult (A.Done     i r) = Right (r, i)
    toResult (A.Partial  f)   = toResult $ f BS.empty
    toResult (A.Fail _ ctx e) = Left $ DecodeError $ head $ ctx ++ [e]

runSGetWithLeftovers :: SGet a -> ByteString -> Either DNSError ((a, PState), ByteString)
runSGetWithLeftovers = runSGetWithLeftoversAt dnsTimeMid

runSPut :: SPut -> ByteString
runSPut = LBS.toStrict . BB.toLazyByteString . flip ST.evalState initialWState

----------------------------------------------------------------

-- | Decode a domain name in A-label form to a leading label and a tail with
-- the remaining labels, unescaping backlashed chars and decimal triples along
-- the way. Any  U-label conversion belongs at the layer above this code.
--
-- This function is pure, but is not total, it throws an error when presented
-- with malformed input
--
parseLabel :: Word8 -> ByteString -> (ByteString, ByteString)
parseLabel sep dom =
    if BS.any (== bslash) dom
    then toResult $ A.parse (labelParser sep mempty) dom
    else check $ safeTail <$> BS.break (== sep) dom
  where
    toResult (A.Partial c)  = toResult (c mempty)
    toResult (A.Done tl hd) = check (hd, tl)
    toResult _ = bottom
    safeTail bs | BS.null bs = mempty
                | otherwise = BS.tail bs
    check r@(hd, tl) | not (BS.null hd) || BS.null tl = r
                     | otherwise = bottom
    bottom = E.throw $ DecodeError $ "invalid domain: " ++ S8.unpack dom

labelParser :: Word8 -> ByteString -> A.Parser ByteString
labelParser sep acc = do
    acc' <- mappend acc <$> A.option mempty simple
    labelEnd sep acc' <|> (escaped >>= labelParser sep . BS.snoc acc')
  where
    simple = fst <$> A.match skipUnescaped
      where
        skipUnescaped = A.skipMany1 $ A.satisfy notSepOrBslash
        notSepOrBslash w = w /= sep && w /= bslash

    escaped = do
        A.skip (== bslash)
        either decodeDec pure =<< A.eitherP digit A.anyWord8
      where
        digit = fromIntegral <$> A.satisfyWith (\n -> n - zero) (<=9)
        decodeDec d =
            safeWord8 =<< trigraph d <$> digit <*> digit
          where
            trigraph :: Word -> Word -> Word -> Word
            trigraph x y z = 100 * x + 10 * y + z

            safeWord8 :: Word -> A.Parser Word8
            safeWord8 n | n > 255 = mzero
                        | otherwise = pure $ fromIntegral n

labelEnd :: Word8 -> ByteString -> A.Parser ByteString
labelEnd sep acc =
    A.satisfy (== sep) *> pure acc <|>
    A.endOfInput       *> pure acc

----------------------------------------------------------------

-- | Convert a wire-form label to presentation-form by escaping
-- the separator, special and non-printing characters.  For simple
-- labels with no bytes that require escaping we get back the input
-- bytestring asis with no copying or re-construction.
--
-- Note: the separator is required to be either \'.\' or \'\@\', but this
-- constraint is the caller's responsibility and is not checked here.
--
unparseLabel :: Word8 -> ByteString -> ByteString
unparseLabel sep label =
    if BS.all (isPlain sep) label
    then label
    else toResult $ A.parse (labelUnparser sep mempty) label
  where
    toResult (A.Partial c) = toResult (c mempty)
    toResult (A.Done _ r) = r
    toResult _ = E.throw UnknownDNSError -- can't happen

labelUnparser :: Word8 -> ByteString -> A.Parser ByteString
labelUnparser sep acc = do
    acc' <- mappend acc <$> A.option mempty asis
    A.endOfInput *> pure acc' <|> (esc >>= labelUnparser sep . mappend acc')
  where
    -- Non-printables are escaped as decimal trigraphs, while printable
    -- specials just get a backslash prefix.
    esc = do
        w <- A.anyWord8
        if w <= 32 || w >= 127
        then let (q100, r100) = w `divMod` 100
                 (q10, r10) = r100 `divMod` 10
              in pure $ BS.pack [ bslash, zero + q100, zero + q10, zero + r10 ]
        else pure $ BS.pack [ bslash, w ]

    -- Runs of plain bytes are recognized as a single chunk, which is then
    -- returned as-is.
    asis = fmap fst $ A.match $ A.skipMany1 $ A.satisfy $ isPlain sep

-- | In the presentation form of DNS labels, these characters are escaped by
-- prepending a backlash. (They have special meaning in zone files). Whitespace
-- and other non-printable or non-ascii characters are encoded via "\DDD"
-- decimal escapes. The separator character is also quoted in each label. Note
-- that '@' is quoted even when not the separator.
escSpecials :: ByteString
escSpecials = "\"$();@\\"

-- | Is the given byte the separator or one of the specials?
isSpecial :: Word8 -> Word8 -> Bool
isSpecial sep w = w == sep || BS.elemIndex w escSpecials /= Nothing

-- | Is the given byte a plain byte that reqires no escaping. The tests are
-- ordered to succeed or fail quickly in the most common cases. The test
-- ranges assume the expected numeric values of the named special characters.
-- Note: the separator is assumed to be either '.' or '@' and so not matched by
-- any of the first three fast-path 'True' cases.
isPlain :: Word8 -> Word8 -> Bool
isPlain sep w | w >= 127                 = False -- <DEL> + non-ASCII
              | w > bslash               = True  -- ']'..'_'..'a'..'z'..'~'
              | w >= zero && w < semi    = True  -- '0'..'9'..':'
              | w > atsign && w < bslash = True  -- 'A'..'Z'..'['
              | w <= 32                  = False -- non-printables
              | isSpecial sep w          = False -- one of the specials
              | otherwise                = True  -- plain punctuation

-- | Some numeric byte constants.
zero, semi, atsign, bslash :: Word8
zero = fromIntegral $ fromEnum '0'    -- 48
semi = fromIntegral $ fromEnum ';'    -- 59
atsign = fromIntegral $ fromEnum '@'  -- 64
bslash = fromIntegral $ fromEnum '\\' -- 92