Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- data BiDiag (t :: Type) (n :: Nat) (m :: Nat) = BiDiag {}
- biDiag :: forall (t :: Type) (n :: Nat) (m :: Nat). (PrimBytes t, Num t) => Dims '[n, m] -> Vector t (Min n m) -> Vector t (Min n m) -> Matrix t n m
- bidiagonalHouseholder :: forall (t :: Type) (n :: Nat) (m :: Nat). (PrimBytes t, Ord t, Epsilon t, KnownDim n, KnownDim m) => Matrix t n m -> BiDiag t n m
Documentation
data BiDiag (t :: Type) (n :: Nat) (m :: Nat) Source #
Decomposition of a matrix \( A = U B V^\intercal \) such that \( U \) and \( V \) are orthogonal and \( B \) is bidiagonal.
BiDiag | |
|
biDiag :: forall (t :: Type) (n :: Nat) (m :: Nat). (PrimBytes t, Num t) => Dims '[n, m] -> Vector t (Min n m) -> Vector t (Min n m) -> Matrix t n m Source #
Put two vectors on the main and first upper diagonal.
bidiagonalHouseholder :: forall (t :: Type) (n :: Nat) (m :: Nat). (PrimBytes t, Ord t, Epsilon t, KnownDim n, KnownDim m) => Matrix t n m -> BiDiag t n m Source #
Decompose a matrix \( A = U B V^\intercal \) such that ( U ) and \( V \) are orthogonal and \( B \) is bidiagonal.
The first returned number