| Bidirectional l => Bidirectional (Op l) | |
| Bidirectional (Id dX) | |
| Bidirectional l => Bidirectional (Map l) | |
| Bidirectional (Iso dX dY) | |
| Bidirectional (Disconnect dX dY) | |
| (R k ~ L l, Bidirectional k, Bidirectional l) => Bidirectional (ComposeLF k l) | |
| (R k ~ L l, Bidirectional k, Bidirectional l) => Bidirectional (ComposeFL k l) | |
| (R k ~ L l, Bidirectional k, Bidirectional l) => Bidirectional (Compose k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (ProductLF k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (ProductFL k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (Product k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (CompactProductLF k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (CompactProductFL k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (CompactProduct k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (Sum k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (CompactSumLF k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (SumFL k l) | |
| (Bidirectional k, Bidirectional l) => Bidirectional (CompactSum k l) | |
| Bidirectional (Partition dX dY) | |
| Bidirectional l => Bidirectional (Map shape l) | |