{-# LANGUAGE DeriveDataTypeable         #-}
{-# LANGUAGE FlexibleInstances          #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE LambdaCase                 #-}
{-# LANGUAGE MultiParamTypeClasses      #-}
{-# LANGUAGE UndecidableInstances       #-}

{- |
Module      : Language.Egison.Types
Copyright   : Satoshi Egi
Licence     : MIT

This module contains type definitions of Egison Data.
-}

module Language.Egison.Types
    (
    -- * Egison values
      EgisonValue (..)
    , Matcher
    , PrimitiveFunc
    , ScalarData (..)
    , PolyExpr (..)
    , TermExpr (..)
    , SymbolExpr (..)
    , EgisonData (..)
    , Tensor (..)
    , HasTensor (..)
    -- * Tensor
    , initTensor
    , tSize
    , tToList
    , tIndex
    , tref
    , enumTensorIndices
    , changeIndexList
    , tTranspose
    , tTranspose'
    , tFlipIndices
    , appendDFscripts
    , removeDFscripts
    , tMap
    , tMap2
    , tMapN
    , tSum
    , tProduct
    , tContract
    , tContract'
    , tConcat
    , tConcat'
    -- * Scalar
    , symbolScalarData
    , getSymId
    , getSymName
    , mathExprToEgison
    , egisonToScalarData
    , mathNormalize'
    , mathFold
    , mathSymbolFold
    , mathTermFold
    , mathRemoveZero
    , mathDivide
    , mathPlus
    , mathMult
    , mathNegate
    , mathNumerator
    , mathDenominator
    , extractScalar
    , extractScalar'
    -- * Internal data
    , Object (..)
    , ObjectRef
    , WHNFData (..)
    , Intermediate (..)
    , Inner (..)
    , EgisonWHNF (..)
    -- * Environment
    , Env (..)
    , VarWithIndices (..)
    , Binding
    , nullEnv
    , extendEnv
    , refVar
    , varToVarWithIndices
    -- * Pattern matching
    , Match
    , MatchingTree (..)
    , MatchingState (..)
    , PatternBinding
    , LoopPatContext (..)
    , SeqPatContext (..)
    -- * Errors
    , EgisonError (..)
    , liftError
    -- * Monads
    , EgisonM (..)
    , runEgisonM
    , liftEgisonM
    , fromEgisonM
    , FreshT (..)
    , Fresh
    , MonadFresh (..)
    , runFreshT
    , MatchM
    , matchFail
    , MList (..)
    , fromList
    , fromSeq
    , fromMList
    , msingleton
    , mfoldr
    , mappend
    , mconcat
    , mmap
    , mfor
    -- * Typing
    , isBool
    , isInteger
    , isRational
    , isSymbol
    , isScalar
    , isTensor
    , isTensorWithIndex
    , isBool'
    , isInteger'
    , isRational'
    , isScalar'
    , isFloat'
    , isComplex'
    , isTensor'
    , isTensorWithIndex'
    , isChar'
    , isString'
    , isCollection'
    , isArray'
    , isHash'
    ) where

import           Prelude                   hiding (foldr, mappend, mconcat)

import           Control.Exception
import           Data.Typeable

import           Control.Monad.Except
import           Control.Monad.Fail
import           Control.Monad.Identity
import           Control.Monad.Reader      (ReaderT)
import           Control.Monad.State
import           Control.Monad.Trans.Maybe
import           Control.Monad.Writer      (WriterT)

import qualified Data.Array                as Array
import           Data.Foldable             (foldr, toList)
import           Data.HashMap.Strict       (HashMap)
import qualified Data.HashMap.Strict       as HashMap
import           Data.IORef
import           Data.Monoid               (Monoid)
import           Data.Sequence             (Seq)
import qualified Data.Sequence             as Sq
import qualified Data.Vector               as V

import           Data.List                 (any, delete, elem, elemIndex, find,
                                            findIndex, intercalate, partition,
                                            splitAt, (\\))
import           Data.Text                 (Text)

import           Data.Ratio
import           System.IO

import           System.IO.Unsafe          (unsafePerformIO)

import           Language.Egison.AST

--
-- Values
--

data EgisonValue =
    World
  | Char Char
  | String Text
  | Bool Bool
  | ScalarData ScalarData
  | TensorData (Tensor EgisonValue)
  | Float Double
  | InductiveData String [EgisonValue]
  | Tuple [EgisonValue]
  | Collection (Seq EgisonValue)
  | Array (Array.Array Integer EgisonValue)
  | IntHash (HashMap Integer EgisonValue)
  | CharHash (HashMap Char EgisonValue)
  | StrHash (HashMap Text EgisonValue)
  | UserMatcher Env [PatternDef]
  | Func (Maybe Var) Env [String] EgisonExpr
  | PartialFunc Env Integer EgisonExpr
  | CFunc (Maybe Var) Env String EgisonExpr
  | MemoizedFunc (Maybe Var) ObjectRef (IORef (HashMap [Integer] ObjectRef)) Env [String] EgisonExpr
  | Proc (Maybe String) Env [String] EgisonExpr
  | Macro [String] EgisonExpr
  | PatternFunc Env [String] EgisonPattern
  | PrimitiveFunc String PrimitiveFunc
  | IOFunc (EgisonM WHNFData)
  | QuotedFunc EgisonValue
  | Port Handle
  | Something
  | Undefined
  | EOF

type Matcher = EgisonValue

type PrimitiveFunc = WHNFData -> EgisonM WHNFData

--
-- Scalar and Tensor Types
--

data ScalarData =
    Div PolyExpr PolyExpr
 deriving (Eq)

newtype PolyExpr =
    Plus [TermExpr]

data TermExpr =
    Term Integer [(SymbolExpr, Integer)]

data SymbolExpr =
    Symbol Id String [Index ScalarData]
  | Apply EgisonValue [ScalarData]
  | Quote ScalarData
  | FunctionData (Maybe EgisonValue) [EgisonValue] [EgisonValue] [Index ScalarData] -- fnname argnames args indices
 deriving (Eq)

type Id = String

instance Eq PolyExpr where
  (Plus []) == (Plus []) = True
  (Plus (x:xs)) == (Plus ys) =
    case elemIndex x ys of
      Just i -> let (hs, _:ts) = splitAt i ys in
                  Plus xs == Plus (hs ++ ts)
      Nothing -> False
  _ == _ = False

instance Eq TermExpr where
  (Term a []) == (Term b []) = a == b
  (Term a ((Quote x, n):xs)) == (Term b ys)
    | (a /= b) && (a /= negate b) = False
    | otherwise = case elemIndex (Quote x, n) ys of
                    Just i -> let (hs, _:ts) = splitAt i ys in
                                Term a xs == Term b (hs ++ ts)
                    Nothing -> case elemIndex (Quote (mathNegate x), n) ys of
                                 Just i -> let (hs, _:ts) = splitAt i ys in
                                             if even n
                                               then Term a xs == Term b (hs ++ ts)
                                               else Term (negate a) xs == Term b (hs ++ ts)
                                 Nothing -> False
  (Term a (x:xs)) == (Term b ys)
    | (a /= b) && (a /= negate b) = False
    | otherwise = case elemIndex x ys of
                    Just i -> let (hs, _:ts) = splitAt i ys in
                                Term a xs == Term b (hs ++ ts)
                    Nothing -> False
  _ == _ = False


data Tensor a =
    Tensor [Integer] (V.Vector a) [Index EgisonValue]
  | Scalar a
 deriving (Show)

class HasTensor a where
  tensorElems :: a -> V.Vector a
  tensorSize :: a -> [Integer]
  tensorIndices :: a -> [Index EgisonValue]
  fromTensor :: Tensor a -> EgisonM a
  toTensor :: a -> EgisonM (Tensor a)
  undef :: a

instance HasTensor EgisonValue where
  tensorElems (TensorData (Tensor _ xs _)) = xs
  tensorSize (TensorData (Tensor ns _ _)) = ns
  tensorIndices (TensorData (Tensor _ _ js)) = js
  fromTensor t@Tensor{} = return $ TensorData t
  fromTensor (Scalar x) = return x
  toTensor (TensorData t) = return t
  toTensor x              = return $ Scalar x
  undef = Undefined

instance HasTensor WHNFData where
  tensorElems (Intermediate (ITensor (Tensor _ xs _))) = xs
  tensorSize (Intermediate (ITensor (Tensor ns _ _))) = ns
  tensorIndices (Intermediate (ITensor (Tensor _ _ js))) = js
  fromTensor t@Tensor{} = return $ Intermediate $ ITensor t
  fromTensor (Scalar x) = return x
  toTensor (Intermediate (ITensor t)) = return t
  toTensor x                          = return $ Scalar x
  undef = Value Undefined

--
-- Scalars
--

symbolScalarData :: String -> String -> EgisonValue
symbolScalarData id name = ScalarData (Div (Plus [Term 1 [(Symbol id name [], 1)]]) (Plus [Term 1 []]))

getSymId :: EgisonValue -> String
getSymId (ScalarData (Div (Plus [Term 1 [(Symbol id name [], 1)]]) (Plus [Term 1 []]))) = id

getSymName :: EgisonValue -> String
getSymName (ScalarData (Div (Plus [Term 1 [(Symbol id name [], 1)]]) (Plus [Term 1 []]))) = name

mathExprToEgison :: ScalarData -> EgisonValue
mathExprToEgison (Div p1 p2) = InductiveData "Div" [polyExprToEgison p1, polyExprToEgison p2]

polyExprToEgison :: PolyExpr -> EgisonValue
polyExprToEgison (Plus ts) = InductiveData "Plus" [Collection (Sq.fromList (map termExprToEgison ts))]

termExprToEgison :: TermExpr -> EgisonValue
termExprToEgison (Term a xs) = InductiveData "Term" [toEgison a, Collection (Sq.fromList (map symbolExprToEgison xs))]

symbolExprToEgison :: (SymbolExpr, Integer) -> EgisonValue
symbolExprToEgison (Symbol id x js, n) = Tuple [InductiveData "Symbol" [symbolScalarData id x, f js], toEgison n]
 where
  f js = Collection (Sq.fromList (map (\case
                                          Superscript k -> InductiveData "Sup" [ScalarData k]
                                          Subscript k -> InductiveData "Sub" [ScalarData k]
                                          Userscript k -> InductiveData "User" [ScalarData k]
                                      ) js))
symbolExprToEgison (Apply fn mExprs, n) = Tuple [InductiveData "Apply" [fn, Collection (Sq.fromList (map mathExprToEgison mExprs))], toEgison n]
symbolExprToEgison (Quote mExpr, n) = Tuple [InductiveData "Quote" [mathExprToEgison mExpr], toEgison n]
symbolExprToEgison (FunctionData name argnames args js, n) =
  case name of
    Nothing -> Tuple [InductiveData "Function" [symbolScalarData "" "", Collection (Sq.fromList argnames), Collection (Sq.fromList args), f js], toEgison n]
    Just name' -> Tuple [InductiveData "Function" [name', Collection (Sq.fromList argnames), Collection (Sq.fromList args), f js], toEgison n]
 where
  f js = Collection (Sq.fromList (map (\case
                                          Superscript k -> InductiveData "Sup" [ScalarData k]
                                          Subscript k -> InductiveData "Sub" [ScalarData k]
                                          Userscript k -> InductiveData "User" [ScalarData k]
                                      ) js))

egisonToScalarData :: EgisonValue -> EgisonM ScalarData
egisonToScalarData (InductiveData "Div" [p1, p2]) = Div <$> egisonToPolyExpr p1 <*> egisonToPolyExpr p2
egisonToScalarData p1@(InductiveData "Plus" _) = Div <$> egisonToPolyExpr p1 <*> return (Plus [Term 1 []])
egisonToScalarData t1@(InductiveData "Term" _) = do
  t1' <- egisonToTermExpr t1
  return $ Div (Plus [t1']) (Plus [Term 1 []])
egisonToScalarData s1@(InductiveData "Symbol" _) = do
  s1' <- egisonToSymbolExpr (Tuple [s1, toEgison (1 ::Integer)])
  return $ Div (Plus [Term 1 [s1']]) (Plus [Term 1 []])
egisonToScalarData s1@(InductiveData "Apply" _) = do
  s1' <- egisonToSymbolExpr (Tuple [s1, toEgison (1 :: Integer)])
  return $ Div (Plus [Term 1 [s1']]) (Plus [Term 1 []])
egisonToScalarData s1@(InductiveData "Quote" _) = do
  s1' <- egisonToSymbolExpr (Tuple [s1, toEgison (1 :: Integer)])
  return $ Div (Plus [Term 1 [s1']]) (Plus [Term 1 []])
egisonToScalarData s1@(InductiveData "Function" _) = do
  s1' <- egisonToSymbolExpr (Tuple [s1, toEgison (1 :: Integer)])
  return $ Div (Plus [Term 1 [s1']]) (Plus [Term 1 []])
egisonToScalarData val = throwError =<< TypeMismatch "math expression" (Value val) <$> getFuncNameStack

egisonToPolyExpr :: EgisonValue -> EgisonM PolyExpr
egisonToPolyExpr (InductiveData "Plus" [Collection ts]) = Plus <$> mapM egisonToTermExpr (toList ts)
egisonToPolyExpr val = throwError =<< TypeMismatch "math poly expression" (Value val) <$> getFuncNameStack

egisonToTermExpr :: EgisonValue -> EgisonM TermExpr
egisonToTermExpr (InductiveData "Term" [n, Collection ts]) = Term <$> fromEgison n <*> mapM egisonToSymbolExpr (toList ts)
egisonToTermExpr val = throwError =<< TypeMismatch "math term expression" (Value val) <$> getFuncNameStack

egisonToSymbolExpr :: EgisonValue -> EgisonM (SymbolExpr, Integer)
egisonToSymbolExpr (Tuple [InductiveData "Symbol" [x, Collection seq], n]) = do
  let js = toList seq
  js' <- mapM (\j -> case j of
                       InductiveData "Sup" [ScalarData k] -> return (Superscript k)
                       InductiveData "Sub" [ScalarData k] -> return (Subscript k)
                       InductiveData "User" [ScalarData k] -> return (Userscript k)
                       _ -> throwError =<< TypeMismatch "math symbol expression" (Value j) <$> getFuncNameStack
               ) js
  n' <- fromEgison n
  case x of
    (ScalarData (Div (Plus [Term 1 [(Symbol id name [], 1)]]) (Plus [Term 1 []]))) ->
      return (Symbol id name js', n')
egisonToSymbolExpr (Tuple [InductiveData "Apply" [fn, Collection mExprs], n]) = do
  mExprs' <- mapM egisonToScalarData (toList mExprs)
  n' <- fromEgison n
  return (Apply fn mExprs', n')
egisonToSymbolExpr (Tuple [InductiveData "Quote" [mExpr], n]) = do
  mExpr' <- egisonToScalarData mExpr
  n' <- fromEgison n
  return (Quote mExpr', n')
egisonToSymbolExpr (Tuple [InductiveData "Function" [name, Collection argnames, Collection args, Collection seq], n]) = do
  let js = toList seq
  js' <- mapM (\j -> case j of
                         InductiveData "Sup" [ScalarData k] -> return (Superscript k)
                         InductiveData "Sub" [ScalarData k] -> return (Subscript k)
                         InductiveData "User" [ScalarData k] -> return (Userscript k)
                         _ -> throwError =<< TypeMismatch "math symbol expression" (Value j) <$> getFuncNameStack
               ) js
  n' <- fromEgison n
  let name' = case getSymName name of
                "" -> Nothing
                s  -> Just name
  return (FunctionData name' (toList argnames) (toList args) js', n')
egisonToSymbolExpr val = throwError =<< TypeMismatch "math symbol expression" (Value val) <$> getFuncNameStack

mathNormalize' :: ScalarData -> ScalarData
mathNormalize' mExpr = mathDivide (mathRemoveZero (mathFold (mathRemoveZeroSymbol mExpr)))

termsGcd :: [TermExpr] -> TermExpr
termsGcd (t:ts) = f t ts
 where
  f :: TermExpr -> [TermExpr] -> TermExpr
  f ret [] =  ret
  f (Term a xs) (Term b ys:ts) =
    f (Term (gcd a b) (g xs ys)) ts
  g :: [(SymbolExpr, Integer)] -> [(SymbolExpr, Integer)] -> [(SymbolExpr, Integer)]
  g [] ys = []
  g ((x, n):xs) ys = let (z, m) = h (x, n) ys in
    if m == 0 then g xs ys else (z, m):g xs ys
  h :: (SymbolExpr, Integer) -> [(SymbolExpr, Integer)] -> (SymbolExpr, Integer)
  h (x, n) [] = (x, 0)
  h (Quote x, n) ((Quote y, m):ys)
    | x == y = (Quote x, min n m)
    | x == mathNegate y = (Quote x, min n m)
    | otherwise = h (Quote x, n) ys
  h (x, n) ((y, m):ys) = if x == y
                         then (x, min n m)
                         else h (x, n) ys

mathDivide :: ScalarData -> ScalarData
mathDivide (Div (Plus ts1) (Plus [])) = Div (Plus ts1) (Plus [])
mathDivide (Div (Plus []) (Plus ts2)) = Div (Plus []) (Plus ts2)
mathDivide (Div (Plus ts1) (Plus ts2)) =
  let z = termsGcd (ts1 ++ ts2) in
  case z of
    (Term c zs) -> case ts2 of
      [Term a _] -> if a < 0
                      then Div (Plus (map (`mathDivideTerm` Term (-1 * c) zs) ts1)) (Plus (map (`mathDivideTerm` Term (-1 * c) zs) ts2))
                      else Div (Plus (map (`mathDivideTerm` z) ts1)) (Plus (map (`mathDivideTerm` z) ts2))
      _ -> Div (Plus (map (`mathDivideTerm` z) ts1)) (Plus (map (`mathDivideTerm` z) ts2))

mathDivideTerm :: TermExpr -> TermExpr -> TermExpr
mathDivideTerm (Term a xs) (Term b ys) =
  let (sgn, zs) = f 1 xs ys in
  Term (sgn * div a b) zs
 where
  f :: Integer -> [(SymbolExpr, Integer)] -> [(SymbolExpr, Integer)] -> (Integer, [(SymbolExpr, Integer)])
  f sgn xs [] = (sgn, xs)
  f sgn xs ((y, n):ys) =
    let (sgns, zs) = unzip (map (\(x, m) -> g (x, m) (y, n)) xs) in
    f (sgn * product sgns) zs ys
  g :: (SymbolExpr, Integer) -> (SymbolExpr, Integer) -> (Integer, (SymbolExpr, Integer))
  g (Quote x, n) (Quote y, m)
    | x == y = (1, (Quote x, n - m))
    | x == mathNegate y = if even m then (1, (Quote x, n - m)) else (-1, (Quote x, n - m))
    | otherwise = (1, (Quote x, n))
  g (x, n) (y, m) =
    if x == y
    then (1, (x, n - m))
    else (1, (x, n))

mathRemoveZeroSymbol :: ScalarData -> ScalarData
mathRemoveZeroSymbol (Div (Plus ts1) (Plus ts2)) =
  let p x = case x of
              (_, 0) -> False
              _      -> True in
  let ts1' = map (\(Term a xs) -> Term a (filter p xs)) ts1 in
  let ts2' = map (\(Term a xs) -> Term a (filter p xs)) ts2 in
    Div (Plus ts1') (Plus ts2')

mathRemoveZero :: ScalarData -> ScalarData
mathRemoveZero (Div (Plus ts1) (Plus ts2)) =
  let ts1' = filter (\(Term a _) -> a /= 0) ts1 in
  let ts2' = filter (\(Term a _) -> a /= 0) ts2 in
    case ts1' of
      [] -> Div (Plus []) (Plus [Term 1 []])
      _  -> Div (Plus ts1') (Plus ts2')

mathFold :: ScalarData -> ScalarData
mathFold mExpr = mathTermFold (mathSymbolFold (mathTermFold mExpr))

mathSymbolFold :: ScalarData -> ScalarData
mathSymbolFold (Div (Plus ts1) (Plus ts2)) = Div (Plus (map f ts1)) (Plus (map f ts2))
 where
  f :: TermExpr -> TermExpr
  f (Term a xs) = let (ys, sgns) = unzip $ g [] xs
                    in Term (product sgns * a) ys
  g :: [((SymbolExpr, Integer),Integer)] -> [(SymbolExpr, Integer)] -> [((SymbolExpr, Integer),Integer)]
  g ret [] = ret
  g ret ((x, n):xs) =
    if any (p (x, n)) ret
      then g (map (h (x, n)) ret) xs
      else g (ret ++ [((x, n), 1)]) xs
  p :: (SymbolExpr, Integer) -> ((SymbolExpr, Integer), Integer) -> Bool
  p (Quote x, _) ((Quote y, _),_) = (x == y) || (mathNegate x == y)
  p (x, _) ((y, _),_)             = x == y
  h :: (SymbolExpr, Integer) -> ((SymbolExpr, Integer), Integer) -> ((SymbolExpr, Integer), Integer)
  h (Quote x, n) ((Quote y, m), sgn)
    | x == y = ((Quote y, m + n), sgn)
    | x == mathNegate y = if even n then ((Quote y, m + n), sgn) else ((Quote y, m + n), -1 * sgn)
    | otherwise = ((Quote y, m), sgn)
  h (x, n) ((y, m), sgn) = if x == y
                             then ((y, m + n), sgn)
                             else ((y, m), sgn)

mathTermFold :: ScalarData -> ScalarData
mathTermFold (Div (Plus ts1) (Plus ts2)) = Div (Plus (f ts1)) (Plus (f ts2))
 where
  f :: [TermExpr] -> [TermExpr]
  f = f' []
  f' :: [TermExpr] -> [TermExpr] -> [TermExpr]
  f' ret [] = ret
  f' ret (Term a xs:ts) =
    if any (\(Term _ ys) -> fst (p 1 xs ys)) ret
      then f' (map (g (Term a xs)) ret) ts
      else f' (ret ++ [Term a xs]) ts
  g :: TermExpr -> TermExpr -> TermExpr
  g (Term a xs) (Term b ys) = let (c, sgn) = p 1 xs ys in
                                if c
                                  then Term ((sgn * a) + b) ys
                                  else Term b ys
  p :: Integer -> [(SymbolExpr, Integer)] -> [(SymbolExpr, Integer)] -> (Bool, Integer)
  p sgn [] [] = (True, sgn)
  p sgn [] _ = (False, 0)
  p sgn ((x, n):xs) ys =
    let (b, ys', sgn2) = q (x, n) [] ys in
      if b
        then p (sgn * sgn2) xs ys'
        else (False, 0)
  q :: (SymbolExpr, Integer) -> [(SymbolExpr, Integer)] -> [(SymbolExpr, Integer)] -> (Bool, [(SymbolExpr, Integer)], Integer)
  q _ _ [] = (False, [], 1)
  q (Quote x, n) ret ((Quote y, m):ys)
    | (x == y) && (n == m) = (True, ret ++ ys, 1)
    | (mathNegate x == y) && (n == m) = if even n then (True, ret ++ ys, 1) else (True, ret ++ ys, -1)
    | otherwise = q (Quote x, n) (ret ++ [(Quote y, m)]) ys
  q (Quote x, n) ret ((y,m):ys) = q (Quote x, n) (ret ++ [(y, m)]) ys
  q (x, n) ret ((y, m):ys) = if (x == y) && (n == m)
                               then (True, ret ++ ys, 1)
                               else q (x, n) (ret ++ [(y, m)]) ys

--
--  Arithmetic operations
--

mathPlus :: ScalarData -> ScalarData -> ScalarData
mathPlus (Div m1 n1) (Div m2 n2) = mathNormalize' $ Div (mathPlusPoly (mathMultPoly m1 n2) (mathMultPoly m2 n1)) (mathMultPoly n1 n2)

mathPlusPoly :: PolyExpr -> PolyExpr -> PolyExpr
mathPlusPoly (Plus ts1) (Plus ts2) = Plus (ts1 ++ ts2)

mathMult :: ScalarData -> ScalarData -> ScalarData
mathMult (Div m1 n1) (Div m2 n2) = mathNormalize' $ Div (mathMultPoly m1 m2) (mathMultPoly n1 n2)

mathMult' :: ScalarData -> ScalarData -> ScalarData
mathMult' (Div m1 n1) (Div m2 n2) = Div (mathMultPoly m1 m2) (mathMultPoly n1 n2)

mathMultPoly :: PolyExpr -> PolyExpr -> PolyExpr
mathMultPoly (Plus []) (Plus _) = Plus []
mathMultPoly (Plus _) (Plus []) = Plus []
mathMultPoly (Plus ts1) (Plus ts2) = foldl mathPlusPoly (Plus []) (map (\(Term a xs) -> Plus (map (\(Term b ys) -> Term (a * b) (xs ++ ys)) ts2)) ts1)

mathNegate :: ScalarData -> ScalarData
mathNegate (Div m n) = Div (mathNegate' m) n

mathNegate' :: PolyExpr -> PolyExpr
mathNegate' (Plus ts) = Plus (map (\(Term a xs) -> Term (negate a) xs) ts)

mathNumerator :: ScalarData -> ScalarData
mathNumerator (Div m _) = Div m (Plus [Term 1 []])

mathDenominator :: ScalarData -> ScalarData
mathDenominator (Div _ n) = Div n (Plus [Term 1 []])

--
-- ExtractScalar
--

extractScalar :: EgisonValue -> EgisonM ScalarData
extractScalar (ScalarData mExpr) = return mExpr
extractScalar val = throwError =<< TypeMismatch "math expression" (Value val) <$> getFuncNameStack

extractScalar' :: WHNFData -> EgisonM ScalarData
extractScalar' (Value (ScalarData x)) = return x
extractScalar' val = throwError =<< TypeMismatch "integer or string" val <$> getFuncNameStack

--
-- Tensors
--

initTensor :: [Integer] -> [a] -> [EgisonValue] -> [EgisonValue] -> Tensor a
initTensor ns xs sup sub = Tensor ns (V.fromList xs) (map Superscript sup ++ map Subscript sub)

tSize :: Tensor a -> [Integer]
tSize (Tensor ns _ _) = ns
tSize (Scalar _)      = []

tToList :: Tensor a -> [a]
tToList (Tensor _ xs _) = V.toList xs
tToList (Scalar x)      = [x]

tToVector :: Tensor a -> V.Vector a
tToVector (Tensor _ xs _) = xs
tToVector (Scalar x)      = V.fromList [x]

tIndex :: Tensor a -> [Index EgisonValue]
tIndex (Tensor _ _ js) = js
tIndex (Scalar _)      = []

tIntRef' :: HasTensor a => Integer -> Tensor a -> EgisonM a
tIntRef' i (Tensor [n] xs _) =
  if (0 < i) && (i <= n)
     then fromTensor $ Scalar $ xs V.! fromIntegral (i - 1)
     else throwError =<< TensorIndexOutOfBounds i n <$> getFuncNameStack
tIntRef' i (Tensor (n:ns) xs js) =
  if (0 < i) && (i <= n)
   then let w = fromIntegral (product ns) in
        let ys = V.take w (V.drop (w * fromIntegral (i - 1)) xs) in
          fromTensor $ Tensor ns ys (cdr js)
   else throwError =<< TensorIndexOutOfBounds i n <$> getFuncNameStack
tIntRef' i _ = throwError $ Default "More indices than the order of the tensor"

tIntRef :: HasTensor a => [Integer] -> Tensor a -> EgisonM (Tensor a)
tIntRef [] (Tensor [] xs _)
  | V.length xs == 1 = return $ Scalar (xs V.! 0)
  | otherwise = throwError =<< EgisonBug "sevaral elements in scalar tensor" <$> getFuncNameStack
tIntRef [] t = return t
tIntRef (m:ms) t = tIntRef' m t >>= toTensor >>= tIntRef ms

tref :: HasTensor a => [Index EgisonValue] -> Tensor a -> EgisonM a
tref [] (Tensor [] xs _)
  | V.length xs == 1 = fromTensor $ Scalar (xs V.! 0)
  | otherwise = throwError =<< EgisonBug "sevaral elements in scalar tensor" <$> getFuncNameStack
tref [] t = fromTensor t
tref (Subscript (ScalarData (Div (Plus [Term m []]) (Plus [Term 1 []]))):ms) t = tIntRef' m t >>= toTensor >>= tref ms
tref (Subscript (ScalarData (Div (Plus []) (Plus [Term 1 []]))):ms) t = tIntRef' 0 t >>= toTensor >>= tref ms
tref (Superscript (ScalarData (Div (Plus [Term m []]) (Plus [Term 1 []]))):ms) t = tIntRef' m t >>= toTensor >>= tref ms
tref (Superscript (ScalarData (Div (Plus []) (Plus [Term 1 []]))):ms) t = tIntRef' 0 t >>= toTensor >>= tref ms
tref (SupSubscript (ScalarData (Div (Plus [Term m []]) (Plus [Term 1 []]))):ms) t = tIntRef' m t >>= toTensor >>= tref ms
tref (SupSubscript (ScalarData (Div (Plus []) (Plus [Term 1 []]))):ms) t = tIntRef' 0 t >>= toTensor >>= tref ms
tref (Subscript (Tuple [mVal, nVal]):ms) t@(Tensor is _ _) = do
  m <- fromEgison mVal
  n <- fromEgison nVal
  if m > n
    then
      fromTensor (Tensor (replicate (length is) 0) V.empty [])
    else do
      ts <- mapM (\i -> tIntRef' i t >>= toTensor >>= tref ms >>= toTensor) [m..n]
      symId <- fresh
      tConcat (Subscript (symbolScalarData "" (":::" ++ symId))) ts >>= fromTensor
tref (Superscript (Tuple [mVal, nVal]):ms) t@(Tensor is _ _) = do
  m <- fromEgison mVal
  n <- fromEgison nVal
  if m > n
    then
      fromTensor (Tensor (replicate (length is) 0) V.empty [])
    else do
      ts <- mapM (\i -> tIntRef' i t >>= toTensor >>= tref ms >>= toTensor) [m..n]
      symId <- fresh
      tConcat (Superscript (symbolScalarData "" (":::" ++ symId))) ts >>= fromTensor
tref (SupSubscript (Tuple [mVal, nVal]):ms) t@(Tensor is _ _) = do
  m <- fromEgison mVal
  n <- fromEgison nVal
  if m > n
    then
      fromTensor (Tensor (replicate (length is) 0) V.empty [])
    else do
      ts <- mapM (\i -> tIntRef' i t >>= toTensor >>= tref ms >>= toTensor) [m..n]
      symId <- fresh
      tConcat (SupSubscript (symbolScalarData "" (":::" ++ symId))) ts >>= fromTensor
tref (s:ms) (Tensor (n:ns) xs js) = do
  let yss = split (product ns) xs
  ts <- mapM (\ys -> tref ms (Tensor ns ys (cdr js))) yss
  mapM toTensor ts >>= tConcat s >>= fromTensor
tref _ t = throwError $ Default "More indices than the order of the tensor"

enumTensorIndices :: [Integer] -> [[Integer]]
enumTensorIndices [] = [[]]
enumTensorIndices (n:ns) = concatMap (\i -> map (i:) (enumTensorIndices ns)) [1..n]

changeIndexList :: [Index String] -> [EgisonValue] -> [Index String]
changeIndexList idxlist ms = map (\(i, m) -> case i of
                                              Superscript s -> Superscript (s ++ m)
                                              Subscript s -> Subscript (s ++ m)) $ zip idxlist (map show ms)

transIndex :: [Index EgisonValue] -> [Index EgisonValue] -> [Integer] -> EgisonM [Integer]
transIndex [] [] is = return is
transIndex (j1:js1) js2 is = do
  let (hjs2, tjs2) = break (\j2 -> j1 == j2) js2
  if null tjs2
    then throwError =<< InconsistentTensorIndex <$> getFuncNameStack
    else do let n = length hjs2 + 1
            rs <- transIndex js1 (hjs2 ++ tail tjs2) (take (n - 1) is ++ drop n is)
            return (nth (fromIntegral n) is:rs)
transIndex _ _ _ = throwError =<< InconsistentTensorSize <$> getFuncNameStack

tTranspose :: HasTensor a => [Index EgisonValue] -> Tensor a -> EgisonM (Tensor a)
tTranspose is t@(Tensor ns xs js) = do
  ns' <- transIndex js is ns
  xs' <- V.fromList <$> mapM (transIndex js is) (enumTensorIndices ns') >>= mapM (`tIntRef` t) >>= mapM fromTensor
  return $ Tensor ns' xs' is

tTranspose' :: HasTensor a => [EgisonValue] -> Tensor a -> EgisonM (Tensor a)
tTranspose' is t@(Tensor ns xs js) = do
  is' <- g is js
  tTranspose is' t
 where
  f :: Index EgisonValue -> EgisonValue
  f (Subscript i)    = i
  f (Superscript i)  = i
  f (SupSubscript i) = i
  g :: [EgisonValue] -> [Index EgisonValue] -> EgisonM [Index EgisonValue]
  g [] js = return []
  g (i:is) js = case find (\j -> i == f j) js of
                  Nothing ->  throwError =<< InconsistentTensorIndex <$> getFuncNameStack
                  (Just j') -> do js' <- g is js
                                  return $ j':js'

tFlipIndices :: HasTensor a => Tensor a -> EgisonM (Tensor a)
tFlipIndices (Tensor ns xs js) = return $ Tensor ns xs (map flipIndex js)
 where
  flipIndex (Subscript i)   = Superscript i
  flipIndex (Superscript i) = Subscript i
  flipIndex x               = x

appendDFscripts :: Integer -> WHNFData -> EgisonM WHNFData
appendDFscripts id (Intermediate (ITensor (Tensor s xs is))) = do
  let k = fromIntegral (length s - length is)
  return $ Intermediate (ITensor (Tensor s xs (is ++ map (DFscript id) [1..k])))
appendDFscripts id (Value (TensorData (Tensor s xs is))) = do
  let k = fromIntegral (length s - length is)
  return $ Value (TensorData (Tensor s xs (is ++ map (DFscript id) [1..k])))
appendDFscripts _ whnf = return whnf

removeDFscripts :: WHNFData -> EgisonM WHNFData
removeDFscripts (Intermediate (ITensor (Tensor s xs is))) = do
  let (ds, js) = partition isDF is
  (Tensor s ys _) <- tTranspose (js ++ ds) (Tensor s xs is)
  return (Intermediate (ITensor (Tensor s ys js)))
 where
  isDF (DFscript _ _) = True
  isDF _              = False
removeDFscripts (Value (TensorData (Tensor s xs is))) = do
  let (ds, js) = partition isDF is
  (Tensor s ys _) <- tTranspose (js ++ ds) (Tensor s xs is)
  return (Value (TensorData (Tensor s ys js)))
 where
  isDF (DFscript _ _) = True
  isDF _              = False
removeDFscripts whnf = return whnf

tMap :: HasTensor a => (a -> EgisonM a) -> Tensor a -> EgisonM (Tensor a)
tMap f (Tensor ns xs js') = do
  let k = fromIntegral $ length ns - length js'
  let js = js' ++ map (DFscript 0) [1..k]
  xs' <- V.fromList <$> mapM f (V.toList xs)
  t <- toTensor (V.head xs')
  case t of
    (Tensor ns1 _ js1') -> do
      let k1 = fromIntegral $ length ns1 - length js1'
      let js1 = js1' ++ map (DFscript 0) [1..k1]
      tContract' $ Tensor (ns ++ ns1) (V.concat (V.toList (V.map tensorElems xs'))) (js ++ js1)
    _ -> return $ Tensor ns xs' js
tMap f (Scalar x) = Scalar <$> f x

tMapN :: HasTensor a => ([a] -> EgisonM a) -> [Tensor a] -> EgisonM (Tensor a)
tMapN f ts@(Tensor ns xs js:_) = do
  xs' <- mapM (\is -> mapM (tIntRef is) ts >>= mapM fromTensor >>= f) (enumTensorIndices ns)
  return $ Tensor ns (V.fromList xs') js
tMapN f xs = Scalar <$> (mapM fromTensor xs >>= f)

tMap2 :: HasTensor a => (a -> a -> EgisonM a) -> Tensor a -> Tensor a -> EgisonM (Tensor a)
tMap2 f t1@(Tensor ns1 xs1 js1') t2@(Tensor ns2 xs2 js2') = do
  let k1 = fromIntegral $ length ns1 - length js1'
  let js1 = js1' ++ map (DFscript 0) [1..k1]
  let k2 = fromIntegral $ length ns2 - length js2'
  let js2 = js2' ++ map (DFscript 0) [1..k2]
  let (cjs, tjs1, tjs2) = h js1 js2
  t1' <- tTranspose (cjs ++ tjs1) (Tensor ns1 xs1 js1)
  t2' <- tTranspose (cjs ++ tjs2) (Tensor ns2 xs2 js2)
  let cns = take (length cjs) (tSize t1')
  rts1 <- mapM (`tIntRef` t1') (enumTensorIndices cns)
  rts2 <- mapM (`tIntRef` t2') (enumTensorIndices cns)
  rts' <- zipWithM (tProduct f) rts1 rts2
  let ret = Tensor (cns ++ tSize (head rts')) (V.concat (map tToVector rts')) (cjs ++ tIndex (head rts'))
  tTranspose (uniq (tDiagIndex (js1 ++ js2))) ret
 where
  h :: [Index EgisonValue] -> [Index EgisonValue] -> ([Index EgisonValue], [Index EgisonValue], [Index EgisonValue])
  h js1 js2 = let cjs = filter (`elem` js2) js1 in
                (cjs, js1 \\ cjs, js2 \\ cjs)
  uniq :: [Index EgisonValue] -> [Index EgisonValue]
  uniq []     = []
  uniq (x:xs) = x:uniq (delete x xs)
tMap2 f t@Tensor{} (Scalar x) = tMap (`f` x) t
tMap2 f (Scalar x) t@Tensor{} = tMap (f x) t
tMap2 f (Scalar x1) (Scalar x2) = Scalar <$> f x1 x2

tDiag :: HasTensor a => Tensor a -> EgisonM (Tensor a)
tDiag t@(Tensor _ _ js) =
  case filter (\j -> any (p j) js) js of
    [] -> return t
    xs -> do
      let ys = js \\ (xs ++ map rev xs)
      t2 <- tTranspose (xs ++ map rev xs ++ ys) t
      let (ns1, tmp) = splitAt (length xs) (tSize t2)
      let (_, ns2) = splitAt (length xs) tmp
      ts <- mapM (\is -> tIntRef (is ++ is) t2) (enumTensorIndices ns1)
      return $ Tensor (ns1 ++ ns2) (V.concat (map tToVector ts)) (map g xs ++ ys)
 where
  p :: Index EgisonValue -> Index EgisonValue -> Bool
  p (Superscript i) (Subscript j) = i == j
  p (Subscript i) _               = False
  p _ _                           = False
  rev :: Index EgisonValue -> Index EgisonValue
  rev (Superscript i) = Subscript i
  rev (Subscript i)   = Superscript i
  g :: Index EgisonValue -> Index EgisonValue
  g (Superscript i) = SupSubscript i
  g (Subscript i)   = SupSubscript i
tDiag t = return t

tDiagIndex :: [Index EgisonValue] -> [Index EgisonValue]
tDiagIndex js =
  let xs = filter (\j -> any (p j) js) js in
  let ys = js \\ (xs ++ map rev xs) in
    map g xs ++ ys
 where
  p :: Index EgisonValue -> Index EgisonValue -> Bool
  p (Superscript i) (Subscript j) = i == j
  p (Subscript _) _               = False
  p _ _                           = False
  rev :: Index EgisonValue -> Index EgisonValue
  rev (Superscript i) = Subscript i
  rev (Subscript i)   = Superscript i
  g :: Index EgisonValue -> Index EgisonValue
  g (Superscript i) = SupSubscript i
  g (Subscript i)   = SupSubscript i

tSum :: HasTensor a => (a -> a -> EgisonM a) -> Tensor a -> Tensor a -> EgisonM (Tensor a)
tSum f t1@(Tensor ns1 xs1 js1) t2@Tensor{} = do
  t2' <- tTranspose js1 t2
  case t2' of
    (Tensor ns2 xs2 _)
      | ns2 == ns1 -> do ys <- V.mapM (uncurry f) (V.zip xs1 xs2)
                         return (Tensor ns1 ys js1)
      | otherwise -> throwError =<< InconsistentTensorSize <$> getFuncNameStack

tProduct :: HasTensor a => (a -> a -> EgisonM a) -> Tensor a -> Tensor a -> EgisonM (Tensor a)
tProduct f t1''@(Tensor ns1 xs1 js1') t2''@(Tensor ns2 xs2 js2') = do
  let k1 = fromIntegral $ length ns1 - length js1'
  let js1 = js1' ++ map (DFscript 0) [1..k1]
  let k2 = fromIntegral $ length ns2 - length js2'
  let js2 = js2' ++ map (DFscript 0) [1..k2]
  let (cjs1, cjs2, tjs1, tjs2) = h js1 js2
  let t1 = Tensor ns1 xs1 js1
  let t2 = Tensor ns2 xs2 js2
  case cjs1 of
    [] -> do
      xs' <- V.fromList <$> mapM (\is -> do
                              let is1 = take (length ns1) is
                              let is2 = take (length ns2) (drop (length ns1) is)
                              x1 <- tIntRef is1 t1 >>= fromTensor
                              x2 <- tIntRef is2 t2 >>= fromTensor
                              f x1 x2) (enumTensorIndices (ns1 ++ ns2))
      tContract' (Tensor (ns1 ++ ns2) xs' (js1 ++ js2))
    _ -> do
      t1' <- tTranspose (cjs1 ++ tjs1) t1
      t2' <- tTranspose (cjs2 ++ tjs2) t2
      let (cns1, tns1) = splitAt (length cjs1) (tSize t1')
      let (cns2, tns2) = splitAt (length cjs2) (tSize t2')
      rts' <- mapM (\is -> do rt1 <- tIntRef is t1'
                              rt2 <- tIntRef is t2'
                              tProduct f rt1 rt2) (enumTensorIndices cns1)
      let ret = Tensor (cns1 ++ tSize (head rts')) (V.concat (map tToVector rts')) (map g cjs1 ++ tIndex (head rts'))
      tTranspose (uniq (map g cjs1 ++ tjs1 ++ tjs2)) ret
 where
  h :: [Index EgisonValue] -> [Index EgisonValue] -> ([Index EgisonValue], [Index EgisonValue], [Index EgisonValue], [Index EgisonValue])
  h js1 js2 = let cjs = filter (\j -> any (p j) js2) js1 in
                (cjs, map rev cjs, js1 \\ cjs, js2 \\ map rev cjs)
  p :: Index EgisonValue -> Index EgisonValue -> Bool
  p (Superscript i) (Subscript j) = i == j
  p (Subscript i) (Superscript j) = i == j
  p _ _                           = False
  rev :: Index EgisonValue -> Index EgisonValue
  rev (Superscript i) = Subscript i
  rev (Subscript i)   = Superscript i
  g :: Index EgisonValue -> Index EgisonValue
  g (Superscript i) = SupSubscript i
  g (Subscript i)   = SupSubscript i
  uniq :: [Index EgisonValue] -> [Index EgisonValue]
  uniq []     = []
  uniq (x:xs) = x:uniq (delete x xs)
tProduct f (Scalar x) (Tensor ns xs js) = do
  xs' <- V.mapM (f x) xs
  return $ Tensor ns xs' js
tProduct f (Tensor ns xs js) (Scalar x) = do
  xs' <- V.mapM (`f` x) xs
  return $ Tensor ns xs' js
tProduct f (Scalar x1) (Scalar x2) = Scalar <$> f x1 x2

tContract :: HasTensor a => Tensor a -> EgisonM [Tensor a]
tContract t = do
  t' <- tDiag t
  case t' of
    (Tensor (n:ns) xs (SupSubscript i:js)) -> do
      ts <- mapM (`tIntRef'` t') [1..n]
      tss <- mapM toTensor ts >>= mapM tContract
      return $ concat tss
    _ -> return [t']

tContract' :: HasTensor a => Tensor a -> EgisonM (Tensor a)
tContract' t@(Tensor ns xs js) =
  case findPairs p js of
    [] -> return t
    ((m,n):_) -> do
      let ns' = (ns !! m):removePairs (m,n) ns
      let js' = (js !! m):removePairs (m,n) js
      let (hjs, mjs, tjs) = removePairs' (m,n) js
      xs' <- mapM (\i -> tref (hjs ++ [Subscript (ScalarData (Div (Plus [Term i []]) (Plus [Term 1 []])))] ++ mjs
                                    ++ [Subscript (ScalarData (Div (Plus [Term i []]) (Plus [Term 1 []])))] ++ tjs) t)
                  [1..(ns !! m)]
      mapM toTensor xs' >>= tConcat (js !! m) >>= tTranspose (hjs ++ [js !! m] ++ mjs ++ tjs) >>= tContract'
 where
  p :: Index EgisonValue -> Index EgisonValue -> Bool
  p (Superscript i) (Superscript j)   = i == j
  p (Subscript i) (Subscript j)       = i == j
  p (DFscript i1 j1) (DFscript i2 j2) = (i1 == i2) && (j1 == j2)
  p _ _                               = False
tContract' val = return val

-- utility functions for tensors

nth :: Integer -> [a] -> a
nth i xs = xs !! fromIntegral (i - 1)

cdr :: [a] -> [a]
cdr []     = []
cdr (_:ts) = ts

split :: Integer -> V.Vector a -> [V.Vector a]
split w xs
 | V.null xs = []
 | otherwise = let (hs, ts) = V.splitAt (fromIntegral w) xs in
                 hs:split w ts

tConcat :: HasTensor a => Index EgisonValue -> [Tensor a] -> EgisonM (Tensor a)
tConcat s (Tensor ns@(0:_) _ js:_) = return $ Tensor (0:ns) V.empty (s:js)
tConcat s ts@(Tensor ns _ js:_) = return $ Tensor (fromIntegral (length ts):ns) (V.concat (map tToVector ts)) (s:js)
tConcat s ts = do
  ts' <- mapM getScalar ts
  return $ Tensor [fromIntegral (length ts)] (V.fromList ts') [s]

tConcat' :: HasTensor a => [Tensor a] -> EgisonM (Tensor a)
tConcat' (Tensor ns@(0:_) _ _:_) = return $ Tensor (0:ns) V.empty []
tConcat' ts@(Tensor ns v _:_) = return $ Tensor (fromIntegral (length ts):ns) (V.concat (map tToVector ts)) []
tConcat' ts = do
  ts' <- mapM getScalar ts
  return $ Tensor [fromIntegral (length ts)] (V.fromList ts') []

getScalar :: Tensor a -> EgisonM a
getScalar (Scalar x) = return x
getScalar _          = throwError $ Default "Inconsitent Tensor order"

findPairs :: (a -> a -> Bool) -> [a] -> [(Int, Int)]
findPairs p xs = reverse $ findPairs' 0 p xs

findPairs' :: Int -> (a -> a -> Bool) -> [a] -> [(Int, Int)]
findPairs' _ _ [] = []
findPairs' m p (x:xs) = case findIndex (p x) xs of
                    Just i  -> (m, m + i + 1):findPairs' (m + 1) p xs
                    Nothing -> findPairs' (m + 1) p xs

removePairs :: (Int, Int) -> [a] -> [a]
removePairs (m, n) xs =
  let (hs, ms, ts) = removePairs' (m, n) xs
   in hs ++ ms ++ ts

removePairs' :: (Int, Int) -> [a] -> ([a],[a],[a])
removePairs' (m, n) xs =         -- (0,1) [i i]
  let (hms, tts) = splitAt n xs  -- [i] [i]
      ts = tail tts              -- []
      (hs, tms) = splitAt m hms  -- [] [i]
      ms = tail tms              -- []
   in (hs, ms, ts)               -- [] [] []

--
--
--

instance Show EgisonValue where
  show (Char c) = '\'' : c : "'"
  show (String str) = show str
  show (Bool True) = "True"
  show (Bool False) = "False"
  show (ScalarData mExpr) = show mExpr
  show (TensorData (Tensor [_] xs js)) = "[| " ++ intercalate ", " (map show (V.toList xs)) ++ " |]" ++ concatMap show js
  show (TensorData (Tensor [0, 0] _ js)) = "[| [|  |] |]" ++ concatMap show js
  show (TensorData (Tensor [i, j] xs js)) = "[| " ++ intercalate ", " (f (fromIntegral j) (V.toList xs)) ++ " |]" ++ concatMap show js
    where
      f j [] = []
      f j xs = ["[| " ++ intercalate ", " (map show (take j xs)) ++ " |]"] ++ f j (drop j xs)
  show (TensorData (Tensor ns xs js)) = "(tensor [" ++ intercalate ", " (map show ns) ++ "] [" ++ intercalate ", " (map show (V.toList xs)) ++ "] )" ++ concatMap show js
  show (Float x) = show x
  show (InductiveData name vals) = name ++ concatMap ((' ':) . show') vals
    where
      show' x | isAtomic x = show x
              | otherwise  = "(" ++ show x ++ ")"
  show (Tuple vals)      = "(" ++ intercalate ", " (map show vals) ++ ")"
  show (Collection vals) = "[" ++ intercalate ", " (map show (toList vals)) ++ "]"
  show (Array vals)      = "(| " ++ intercalate ", " (map show $ Array.elems vals) ++ " |)"
  show (IntHash hash)  = "{|" ++ intercalate ", " (map (\(key, val) -> "[" ++ show key ++ ", " ++ show val ++ "]") $ HashMap.toList hash) ++ "|}"
  show (CharHash hash) = "{|" ++ intercalate ", " (map (\(key, val) -> "[" ++ show key ++ ", " ++ show val ++ "]") $ HashMap.toList hash) ++ "|}"
  show (StrHash hash)  = "{|" ++ intercalate ", " (map (\(key, val) -> "[" ++ show key ++ ", " ++ show val ++ "]") $ HashMap.toList hash) ++ "|}"
  show UserMatcher{} = "#<user-matcher>"
  show (Func Nothing _ args _) = "(lambda [" ++ intercalate ", " (map show args) ++ "] ...)"
  show (Func (Just name) _ _ _) = show name
  show (PartialFunc _ n expr) = show n ++ "#" ++ show expr
  show (CFunc Nothing _ name _) = "(cambda " ++ name ++ " ...)"
  show (CFunc (Just name) _ _ _) = show name
  show (MemoizedFunc Nothing _ _ _ names _) = "(memoized-lambda [" ++ intercalate ", " names ++ "] ...)"
  show (MemoizedFunc (Just name) _ _ _ names _) = show name
  show (Proc Nothing _ names _) = "(procedure [" ++ intercalate ", " names ++ "] ...)"
  show (Proc (Just name) _ _ _) = name
  show (Macro names _) = "(macro [" ++ intercalate ", " names ++ "] ...)"
  show PatternFunc{} = "#<pattern-function>"
  show (PrimitiveFunc name _) = "#<primitive-function " ++ name ++ ">"
  show (IOFunc _) = "#<io-function>"
  show (QuotedFunc _) = "#<quoted-function>"
  show (Port _) = "#<port>"
  show Something = "something"
  show Undefined = "undefined"
  show World = "#<world>"
  show EOF = "#<eof>"

-- False if we have to put parenthesis around it to make it an atomic expression.
isAtomic :: EgisonValue -> Bool
isAtomic (InductiveData _ []) = True
isAtomic (InductiveData _ _)  = False
isAtomic (ScalarData (Div (Plus [Term _ []]) (Plus [Term 1 []]))) = True
isAtomic (ScalarData _) = False
isAtomic _ = True

instance Show ScalarData where
  show (Div p1 (Plus [Term 1 []])) = show p1
  show (Div p1 p2)                 = show' p1 ++ " / " ++ show' p2
    where
      show' :: PolyExpr -> String
      show' p@(Plus [_]) = show p
      show' p            = "(" ++ show p ++ ")"

instance Show PolyExpr where
  show (Plus [])  = "0"
  show (Plus ts)  = intercalate " + " (map show ts)

instance Show TermExpr where
  show (Term a []) = show a
  show (Term 1 xs) = intercalate " * " (map showPoweredSymbol xs)
  show (Term a xs) = intercalate " * " (show a : map showPoweredSymbol xs)

showPoweredSymbol :: (SymbolExpr, Integer) -> String
showPoweredSymbol (x, 1) = show x
showPoweredSymbol (x, n) = show x ++ "^" ++ show n

instance Show SymbolExpr where
  show (Symbol _ (':':':':':':_) []) = "#"
  show (Symbol _ s []) = s
  show (Symbol _ s js) = s ++ concatMap show js
  show (Apply fn mExprs) = "(" ++ show fn ++ " " ++ unwords (map show mExprs) ++ ")"
  show (Quote mExprs) = "'" ++ show mExprs
  show (FunctionData Nothing argnames args js) = "(functionData [" ++ unwords (map show argnames) ++ "])" ++ concatMap show js
  show (FunctionData (Just name) argnames args js) = show name ++ concatMap show js

instance Eq EgisonValue where
 (Char c) == (Char c') = c == c'
 (String str) == (String str') = str == str'
 (Bool b) == (Bool b') = b == b'
 (ScalarData x) == (ScalarData y) = x == y
 (TensorData (Tensor js xs _)) == (TensorData (Tensor js' xs' _)) = (js == js') && (xs == xs')
 (Float x) == (Float x') = x == x'
 (InductiveData name vals) == (InductiveData name' vals') = (name == name') && (vals == vals')
 (Tuple vals) == (Tuple vals') = vals == vals'
 (Collection vals) == (Collection vals') = vals == vals'
 (Array vals) == (Array vals') = vals == vals'
 (IntHash vals) == (IntHash vals') = vals == vals'
 (CharHash vals) == (CharHash vals') = vals == vals'
 (StrHash vals) == (StrHash vals') = vals == vals'
 (PrimitiveFunc name1 _) == (PrimitiveFunc name2 _) = name1 == name2
 -- Temporary: searching a better solution
 (Func Nothing _ xs1 expr1) == (Func Nothing _ xs2 expr2) = (xs1 == xs2) && (expr1 == expr2)
 (Func (Just name1) _ _ _) == (Func (Just name2) _ _ _) = name1 == name2
 (CFunc Nothing _ x1 expr1) == (CFunc Nothing _ x2 expr2) = (x1 == x2) && (expr1 == expr2)
 (CFunc (Just name1) _ _ _) == (CFunc (Just name2) _ _ _) = name1 == name2
 (Macro xs1 expr1) == (Macro xs2 expr2) = (xs1 == xs2) && (expr1 == expr2)
 _ == _ = False

--
-- Egison data and Haskell data
--
class EgisonData a where
  toEgison :: a -> EgisonValue
  fromEgison :: EgisonValue -> EgisonM a

instance EgisonData Char where
  toEgison = Char
  fromEgison (Char c) = return c
  fromEgison val      = throwError =<< TypeMismatch "char" (Value val) <$> getFuncNameStack

instance EgisonData Text where
  toEgison = String
  fromEgison (String str) = return str
  fromEgison val          = throwError =<< TypeMismatch "string" (Value val) <$> getFuncNameStack

instance EgisonData Bool where
  toEgison = Bool
  fromEgison (Bool b) = return b
  fromEgison val      = throwError =<< TypeMismatch "bool" (Value val) <$> getFuncNameStack

instance EgisonData Integer where
  toEgison 0 = ScalarData $ mathNormalize' (Div (Plus []) (Plus [Term 1 []]))
  toEgison i = ScalarData $ mathNormalize' (Div (Plus [Term i []]) (Plus [Term 1 []]))
  fromEgison (ScalarData (Div (Plus []) (Plus [Term 1 []]))) = return 0
  fromEgison (ScalarData (Div (Plus [Term x []]) (Plus [Term 1 []]))) = return x
  fromEgison val = throwError =<< TypeMismatch "integer" (Value val) <$> getFuncNameStack

instance EgisonData Rational where
  toEgison r = ScalarData $ mathNormalize' (Div (Plus [Term (numerator r) []]) (Plus [Term (denominator r) []]))
  fromEgison (ScalarData (Div (Plus []) _)) = return 0
  fromEgison (ScalarData (Div (Plus [Term x []]) (Plus [Term y []]))) = return (x % y)
  fromEgison val = throwError =<< TypeMismatch "rational" (Value val) <$> getFuncNameStack

instance EgisonData Double where
  toEgison f = Float f
  fromEgison (Float f) = return f
  fromEgison val       = throwError =<< TypeMismatch "float" (Value val) <$> getFuncNameStack

instance EgisonData Handle where
  toEgison = Port
  fromEgison (Port h) = return h
  fromEgison val      = throwError =<< TypeMismatch "port" (Value val) <$> getFuncNameStack

instance EgisonData a => EgisonData [a] where
  toEgison xs = Collection $ Sq.fromList (map toEgison xs)
  fromEgison (Collection seq) = mapM fromEgison (toList seq)
  fromEgison val = throwError =<< TypeMismatch "collection" (Value val) <$> getFuncNameStack

instance EgisonData () where
  toEgison () = Tuple []
  fromEgison (Tuple []) = return ()
  fromEgison val = throwError =<< TypeMismatch "zero element tuple" (Value val) <$> getFuncNameStack

instance (EgisonData a, EgisonData b) => EgisonData (a, b) where
  toEgison (x, y) = Tuple [toEgison x, toEgison y]
  fromEgison (Tuple [x, y]) = liftM2 (,) (fromEgison x) (fromEgison y)
  fromEgison val = throwError =<< TypeMismatch "two elements tuple" (Value val) <$> getFuncNameStack

instance (EgisonData a, EgisonData b, EgisonData c) => EgisonData (a, b, c) where
  toEgison (x, y, z) = Tuple [toEgison x, toEgison y, toEgison z]
  fromEgison (Tuple [x, y, z]) = do
    x' <- fromEgison x
    y' <- fromEgison y
    z' <- fromEgison z
    return (x', y', z')
  fromEgison val = throwError =<< TypeMismatch "two elements tuple" (Value val) <$> getFuncNameStack

instance (EgisonData a, EgisonData b, EgisonData c, EgisonData d) => EgisonData (a, b, c, d) where
  toEgison (x, y, z, w) = Tuple [toEgison x, toEgison y, toEgison z, toEgison w]
  fromEgison (Tuple [x, y, z, w]) = do
    x' <- fromEgison x
    y' <- fromEgison y
    z' <- fromEgison z
    w' <- fromEgison w
    return (x', y', z', w')
  fromEgison val = throwError =<< TypeMismatch "two elements tuple" (Value val) <$> getFuncNameStack

--
-- Internal Data
--

-- |For memoization
type ObjectRef = IORef Object

data Object =
    Thunk (EgisonM WHNFData)
  | WHNF WHNFData

data WHNFData =
    Intermediate Intermediate
  | Value EgisonValue

data Intermediate =
    IInductiveData String [ObjectRef]
  | ITuple [ObjectRef]
  | ICollection (IORef (Seq Inner))
  | IArray (Array.Array Integer ObjectRef)
  | IIntHash (HashMap Integer ObjectRef)
  | ICharHash (HashMap Char ObjectRef)
  | IStrHash (HashMap Text ObjectRef)
  | ITensor (Tensor WHNFData)

data Inner =
    IElement ObjectRef
  | ISubCollection ObjectRef

instance Show WHNFData where
  show (Value val) = show val
  show (Intermediate (IInductiveData name _)) = "<" ++ name ++ " ...>"
  show (Intermediate (ITuple _)) = "[...]"
  show (Intermediate (ICollection _)) = "{...}"
  show (Intermediate (IArray _)) = "(|...|)"
  show (Intermediate (IIntHash _)) = "{|...|}"
  show (Intermediate (ICharHash _)) = "{|...|}"
  show (Intermediate (IStrHash _)) = "{|...|}"
--  show (Intermediate (ITensor _)) = "[|...|]"
  show (Intermediate (ITensor (Tensor ns xs _))) = "[|" ++ show (length ns) ++ show (V.length xs) ++ "|]"

instance Show Object where
  show (Thunk _)   = "#<thunk>"
  show (WHNF whnf) = show whnf

instance Show ObjectRef where
  show _ = "#<ref>"

--
-- Extract data from WHNF
--
class EgisonData a => EgisonWHNF a where
  toWHNF :: a -> WHNFData
  fromWHNF :: WHNFData -> EgisonM a
  toWHNF = Value . toEgison

instance EgisonWHNF Char where
  fromWHNF (Value (Char c)) = return c
  fromWHNF whnf             = throwError =<< TypeMismatch "char" whnf <$> getFuncNameStack

instance EgisonWHNF Text where
  fromWHNF (Value (String str)) = return str
  fromWHNF whnf                 = throwError =<< TypeMismatch "string" whnf <$> getFuncNameStack

instance EgisonWHNF Bool where
  fromWHNF (Value (Bool b)) = return b
  fromWHNF whnf             = throwError =<< TypeMismatch "bool" whnf <$> getFuncNameStack

instance EgisonWHNF Integer where
  fromWHNF (Value (ScalarData (Div (Plus []) (Plus [Term 1 []])))) = return 0
  fromWHNF (Value (ScalarData (Div (Plus [Term x []]) (Plus [Term 1 []])))) = return x
  fromWHNF whnf = throwError =<< TypeMismatch "integer" whnf <$> getFuncNameStack

instance EgisonWHNF Double where
  fromWHNF (Value (Float f)) = return f
  fromWHNF whnf              = throwError =<< TypeMismatch "float" whnf <$> getFuncNameStack

instance EgisonWHNF Handle where
  fromWHNF (Value (Port h)) = return h
  fromWHNF whnf             = throwError =<< TypeMismatch "port" whnf <$> getFuncNameStack

class (EgisonWHNF a) => EgisonObject a where
  toObject :: a -> Object
  toObject = WHNF . toWHNF

--
-- Environment
--

data Env = Env [HashMap Var ObjectRef] (Maybe VarWithIndices)
 deriving (Show)

data VarWithIndices = VarWithIndices [String] [Index String]
 deriving (Eq)

type Binding = (Var, ObjectRef)

instance Show (Index ScalarData) where
  show (Superscript i)  = "~" ++ show i
  show (Subscript i)    = "_" ++ show i
  show (SupSubscript i) = "~_" ++ show i
  show (DFscript _ _)   = ""
  show (Userscript i)   = "|" ++ show i
instance Show VarWithIndices where
  show (VarWithIndices xs is) = intercalate "." xs ++ concatMap show is

instance Show (Index EgisonValue) where
  show (Superscript i) = case i of
    ScalarData (Div (Plus [Term 1 [(Symbol id name (a:indices), 1)]]) (Plus [Term 1 []])) -> "~[" ++ show i ++ "]"
    _ -> "~" ++ show i
  show (Subscript i) = case i of
    ScalarData (Div (Plus [Term 1 [(Symbol id name (a:indices), 1)]]) (Plus [Term 1 []])) -> "_[" ++ show i ++ "]"
    _ -> "_" ++ show i
  show (SupSubscript i) = "~_" ++ show i
  show (DFscript i j) = "_d" ++ show i ++ show j
  show (Userscript i) = case i of
    ScalarData (Div (Plus [Term 1 [(Symbol id name (a:indices), 1)]]) (Plus [Term 1 []])) -> "_[" ++ show i ++ "]"
    _ -> "|" ++ show i

nullEnv :: Env
nullEnv = Env [] Nothing

extendEnv :: Env -> [Binding] -> Env
extendEnv (Env env idx) bdg = Env ((: env) $ HashMap.fromList bdg) idx

refVar :: Env -> Var -> Maybe ObjectRef
refVar (Env env _) var = msum $ map (HashMap.lookup var) env

varToVarWithIndices :: Var -> VarWithIndices
varToVarWithIndices (Var xs is) = VarWithIndices xs $ map f is
 where
   f :: Index () -> Index String
   f (Superscript ())  = Superscript ""
   f (Subscript ())    = Subscript ""
   f (SupSubscript ()) = SupSubscript ""

--
-- Pattern Match
--

type Match = [Binding]

data MatchingState = MState Env [LoopPatContext] [SeqPatContext] [Binding] [MatchingTree]

instance Show MatchingState where
  show (MState _ _ _ bindings mtrees) = "(MState " ++ unwords ["_", "_", "_", show bindings, show mtrees] ++ ")"

data MatchingTree =
    MAtom EgisonPattern WHNFData Matcher
  | MNode [PatternBinding] MatchingState
 deriving (Show)

type PatternBinding = (String, EgisonPattern)

data LoopPatContext = LoopPatContext Binding ObjectRef EgisonPattern EgisonPattern EgisonPattern
 deriving (Show)

data SeqPatContext = SeqPatContext [MatchingTree] EgisonPattern [Matcher] [WHNFData]
 deriving (Show)

--
-- Errors
--

type CallStack = [String]

data EgisonError =
    UnboundVariable String CallStack
  | TypeMismatch String WHNFData CallStack
  | ArgumentsNumWithNames [String] Int Int CallStack
  | ArgumentsNumPrimitive Int Int CallStack
  | TupleLength Int Int CallStack
  | InconsistentTensorSize CallStack
  | InconsistentTensorIndex CallStack
  | TensorIndexOutOfBounds Integer Integer CallStack
  | NotImplemented String CallStack
  | Assertion String CallStack
  | Parser String
  | EgisonBug String CallStack
  | MatchFailure String CallStack
  | Default String
  deriving Typeable

instance Show EgisonError where
  show (UnboundVariable var stack) =
    "Unbound variable: " ++ show var ++ showTrace stack
  show (TypeMismatch expected found stack) =
    "Expected " ++  expected ++ ", but found: " ++ show found ++ showTrace stack
  show (ArgumentsNumWithNames names expected got stack) =
    "Wrong number of arguments: " ++ show names ++ ": expected " ++ show expected ++ ", but got " ++  show got ++ showTrace stack
  show (ArgumentsNumPrimitive expected got stack) =
    "Wrong number of arguments for a primitive function: expected " ++ show expected ++ ", but got " ++  show got ++ showTrace stack
  show (TupleLength expected got stack) =
    "Inconsistent tuple lengths: expected " ++ show expected ++ ", but got " ++  show got ++ showTrace stack
  show (InconsistentTensorSize stack) = "Inconsistent tensor size" ++ showTrace stack
  show (InconsistentTensorIndex stack) = "Inconsistent tensor index" ++ showTrace stack
  show (TensorIndexOutOfBounds m n stack) = "Tensor index out of bounds: " ++ show m ++ ", " ++ show n ++ showTrace stack
  show (NotImplemented message stack) = "Not implemented: " ++ message ++ showTrace stack
  show (Assertion message stack) = "Assertion failed: " ++ message ++ showTrace stack
  show (Parser err) = "Parse error at: " ++ err
  show (EgisonBug message stack) = "Egison Error: " ++ message ++ showTrace stack
  show (MatchFailure currentFunc stack) = "Failed pattern match in: " ++ currentFunc ++ showTrace stack
  show (Default message) = "Error: " ++ message

showTrace :: CallStack -> String
showTrace stack = "\n  stack trace: " ++ intercalate ", " stack

instance Exception EgisonError

liftError :: (MonadError e m) => Either e a -> m a
liftError = either throwError return

--
-- Monads
--

newtype EgisonM a = EgisonM {
    unEgisonM :: ExceptT EgisonError (FreshT IO) a
  } deriving (Functor, Applicative, Monad, MonadIO, MonadError EgisonError, MonadFresh)

instance MonadFail EgisonM where
    fail msg = throwError =<< EgisonBug msg <$> getFuncNameStack

runEgisonM :: EgisonM a -> FreshT IO (Either EgisonError a)
runEgisonM = runExceptT . unEgisonM

liftEgisonM :: Fresh (Either EgisonError a) -> EgisonM a
liftEgisonM m = EgisonM $ ExceptT $ FreshT $ do
  s <- get
  (a, s') <- return $ runFresh s m
  put s'
  return $ either throwError return a

fromEgisonM :: EgisonM a -> IO (Either EgisonError a)
fromEgisonM = modifyCounter . runEgisonM

{-# NOINLINE counter #-}
counter :: IORef Int
counter = unsafePerformIO $ newIORef 0

readCounter :: IO Int
readCounter = readIORef counter

updateCounter :: Int -> IO ()
updateCounter = writeIORef counter

modifyCounter :: FreshT IO a -> IO a
modifyCounter m = do
  x <- readCounter
  (result, st) <- runFreshT (RuntimeState { indexCounter = x, funcNameStack = [] }) m
  updateCounter $ indexCounter st
  return result

data RuntimeState = RuntimeState
    -- index counter for generating fresh variable
      { indexCounter :: Int
    -- names of called functions for improved error message
      , funcNameStack :: [String]
      }

newtype FreshT m a = FreshT { unFreshT :: StateT RuntimeState m a }
  deriving (Functor, Applicative, Monad, MonadState RuntimeState, MonadTrans)

type Fresh = FreshT Identity

class (Applicative m, Monad m) => MonadFresh m where
  fresh :: m String
  freshV :: m Var
  pushFuncName :: String -> m ()
  topFuncName :: m String
  popFuncName :: m ()
  getFuncNameStack :: m [String]

instance (Applicative m, Monad m) => MonadFresh (FreshT m) where
  fresh = FreshT $ do
    st <- get; modify (\st -> st { indexCounter = indexCounter st + 1 })
    return $ "$_" ++ show (indexCounter st)
  freshV = FreshT $ do
    st <- get; modify (\st -> st {indexCounter = indexCounter st + 1 })
    return $ Var ["$_" ++ show (indexCounter st)] []
  pushFuncName name = FreshT $ do
    st <- get
    put $ st { funcNameStack = name : funcNameStack st }
    return ()
  topFuncName = FreshT $ head . funcNameStack <$> get
  popFuncName = FreshT $ do
    st <- get
    put $ st { funcNameStack = tail $ funcNameStack st }
    return ()
  getFuncNameStack = FreshT $ funcNameStack <$> get

instance (MonadError e m) => MonadError e (FreshT m) where
  throwError = lift . throwError
  catchError m h = FreshT $ catchError (unFreshT m) (unFreshT . h)

instance (MonadState s m) => MonadState s (FreshT m) where
  get = lift get
  put s = lift $ put s

instance (MonadFresh m) => MonadFresh (StateT s m) where
  fresh = lift fresh
  freshV = lift freshV
  pushFuncName name = lift $ pushFuncName name
  topFuncName = lift topFuncName
  popFuncName = lift popFuncName
  getFuncNameStack = lift getFuncNameStack

instance (MonadFresh m) => MonadFresh (ExceptT e m) where
  fresh = lift fresh
  freshV = lift freshV
  pushFuncName name = lift $ pushFuncName name
  topFuncName = lift topFuncName
  popFuncName = lift popFuncName
  getFuncNameStack = lift getFuncNameStack

instance (MonadFresh m, Monoid e) => MonadFresh (ReaderT e m) where
  fresh = lift fresh
  freshV = lift freshV
  pushFuncName name = lift $ pushFuncName name
  topFuncName = lift topFuncName
  popFuncName = lift popFuncName
  getFuncNameStack = lift getFuncNameStack

instance (MonadFresh m, Monoid e) => MonadFresh (WriterT e m) where
  fresh = lift fresh
  freshV = lift freshV
  pushFuncName name = lift $ pushFuncName name
  topFuncName = lift topFuncName
  popFuncName = lift popFuncName
  getFuncNameStack = lift getFuncNameStack

instance MonadIO (FreshT IO) where
  liftIO = lift

runFreshT :: Monad m => RuntimeState -> FreshT m a -> m (a, RuntimeState)
runFreshT = flip (runStateT . unFreshT)

runFresh :: RuntimeState -> Fresh a -> (a, RuntimeState)
runFresh seed m = runIdentity $ flip runStateT seed $ unFreshT m

--
-- MList
--

type MatchM = MaybeT EgisonM

matchFail :: MatchM a
matchFail = MaybeT $ return Nothing

data MList m a = MNil | MCons a (m (MList m a))

instance Show a => Show (MList m a) where
  show MNil        = "MNil"
  show (MCons x _) = "(MCons " ++ show x ++ " ...)"

fromList :: Monad m => [a] -> MList m a
fromList = foldr f MNil
 where f x xs = MCons x $ return xs

fromSeq :: Monad m => Seq a -> MList m a
fromSeq = foldr f MNil
 where f x xs = MCons x $ return xs

fromMList :: Monad m => MList m a -> m [a]
fromMList = mfoldr f $ return []
  where f x xs = (x:) <$> xs

msingleton :: Monad m => a -> MList m a
msingleton = flip MCons $ return MNil

mfoldr :: Monad m => (a -> m b -> m b) -> m b -> MList m a -> m b
mfoldr f init MNil         = init
mfoldr f init (MCons x xs) = f x (xs >>= mfoldr f init)

mappend :: Monad m => MList m a -> m (MList m a) -> m (MList m a)
mappend xs ys = mfoldr ((return .) . MCons) ys xs

mconcat :: Monad m => MList m (MList m a) -> m (MList m a)
mconcat = mfoldr mappend $ return MNil

mmap :: Monad m => (a -> m b) -> MList m a -> m (MList m b)
mmap f = mfoldr g $ return MNil
  where g x xs = flip MCons xs <$> f x

mfor :: Monad m => MList m a -> (a -> m b) -> m (MList m b)
mfor = flip mmap

--
-- Typing
--

isBool :: EgisonValue -> Bool
isBool (Bool _) = True
isBool _        = False

isBool' :: PrimitiveFunc
isBool' (Value val) = return $ Value $ Bool $ isBool val

isInteger :: EgisonValue -> Bool
isInteger (ScalarData (Div (Plus []) (Plus [Term 1 []])))          = True
isInteger (ScalarData (Div (Plus [Term _ []]) (Plus [Term 1 []]))) = True
isInteger _                                                        = False

isInteger' :: PrimitiveFunc
isInteger' (Value val) = return $ Value $ Bool $ isInteger val

isRational :: EgisonValue -> Bool
isRational (ScalarData (Div (Plus []) (Plus [Term _ []])))          = True
isRational (ScalarData (Div (Plus [Term _ []]) (Plus [Term _ []]))) = True
isRational _                                                        = False

isRational' :: PrimitiveFunc
isRational' (Value val) = return $ Value $ Bool $ isRational val

isSymbol :: EgisonValue -> Bool
isSymbol (ScalarData (Div (Plus [Term 1 [(Symbol{}, 1)]]) (Plus [Term 1 []]))) = True
isSymbol _ = False

isScalar :: EgisonValue -> Bool
isScalar (ScalarData _) = True
isScalar _              = False

isScalar' :: PrimitiveFunc
isScalar' (Value (ScalarData _)) = return $ Value $ Bool $ True
isScalar' _           = return $ Value $ Bool False

isTensor :: EgisonValue -> Bool
isTensor (TensorData _) = True
isTensor _              = False

isTensor' :: PrimitiveFunc
isTensor' (Value (TensorData _)) = return $ Value $ Bool $ True
isTensor' (Intermediate (ITensor _)) = return $ Value $ Bool $ True
isTensor' _           = return $ Value $ Bool False

isTensorWithIndex :: EgisonValue -> Bool
isTensorWithIndex (TensorData (Tensor _ _ (_:_))) = True
isTensorWithIndex _                               = False

isTensorWithIndex' :: PrimitiveFunc
isTensorWithIndex' (Value val) = return $ Value $ Bool $ isTensorWithIndex val
isTensorWithIndex' _           = return $ Value $ Bool False

isFloat' :: PrimitiveFunc
isFloat' (Value (Float _)) = return $ Value $ Bool True
isFloat' _                 = return $ Value $ Bool False

isComplex' :: PrimitiveFunc
isComplex' (Value (Float _)) = return $ Value $ Bool True
isComplex' _                 = return $ Value $ Bool False

isChar' :: PrimitiveFunc
isChar' (Value (Char _)) = return $ Value $ Bool True
isChar' _                = return $ Value $ Bool False

isString' :: PrimitiveFunc
isString' (Value (String _)) = return $ Value $ Bool True
isString' _                  = return $ Value $ Bool False

isCollection' :: PrimitiveFunc
isCollection' (Value (Collection _))         = return $ Value $ Bool True
isCollection' (Intermediate (ICollection _)) = return $ Value $ Bool True
isCollection' _                              = return $ Value $ Bool False

isArray' :: PrimitiveFunc
isArray' (Value (Array _))         = return $ Value $ Bool True
isArray' (Intermediate (IArray _)) = return $ Value $ Bool True
isArray' _                         = return $ Value $ Bool False

isHash' :: PrimitiveFunc
isHash' (Value (IntHash _))         = return $ Value $ Bool True
isHash' (Value (StrHash _))         = return $ Value $ Bool True
isHash' (Intermediate (IIntHash _)) = return $ Value $ Bool True
isHash' (Intermediate (IStrHash _)) = return $ Value $ Bool True
isHash' _                           = return $ Value $ Bool False