elliptic-curve-0.3.0: Elliptic curve library

Safe HaskellNone
LanguageHaskell2010

Data.Curve.Binary.SECT571K1

Contents

Synopsis

Documentation

SECT571K1 curve

type PP = BPPoint SECT571K1 F2m Fr Source #

Projective SECT571K1 point.

type PA = BAPoint SECT571K1 F2m Fr Source #

Affine SECT571K1 curve point.

type R = 1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673 Source #

type Fr = Prime R Source #

Field of coefficients of SECT571K1 curve.

type P = 7729075046034516689390703781863974688597854659412869997314470502903038284579120849072387533163845155924927232063004354354730157322085975311485817346934161497393961629647909 Source #

type F2m = Binary P Source #

Field of points of SECT571K1 curve.

_a :: F2m Source #

Coefficient A of SECT571K1 curve.

_b :: F2m Source #

Coefficient B of SECT571K1 curve.

_h :: Natural Source #

Cofactor of SECT571K1 curve.

_p :: Natural Source #

Polynomial of SECT571K1 curve.

_r :: Natural Source #

Order of SECT571K1 curve.

_x :: F2m Source #

Coordinate X of SECT571K1 curve.

_y :: F2m Source #

Coordinate Y of SECT571K1 curve.

gA :: PA Source #

Generator of affine SECT571K1 curve.

gP :: PP Source #

Generator of projective SECT571K1 curve.